WO3-CdS异质结构纳米晶制备与表征任务书
2020-05-24 12:17:04
1. 毕业设计(论文)的内容和要求
纳米晶光催化剂利用太阳能分解水,并将能量储存在h2中,而h2则是一种清洁、高效的能源,因此可以间接实现对太阳能的利用,这为人类实现可持续发展打开了大门。
由于单组分光催化剂(如zno、tio2等)存在电子-空穴对易复合、长期催化时稳定性差等问题,使其很难高效、稳定地制氢。
研究表明,通过将两种不同的半导体进行复合形成z型异质结构纳米晶,能够在保持半导体氧化还原能力不变的情况下有效分离电子和空穴,使其在不同的半导体上分别参与还原和氧化反应,从而提高光催化剂的制氢能力。
2. 参考文献
[1] Zhang L.J., Xie T.F., et al. Highly Efficient CdS/WO3 Photocatalysts: Z Scheme Photocatalytic Mechanism for Their Enhanced Photocatalytic H2 Evolution under Visible Light. ACS Catal., 2014, 4:3724-3729. [2] Zhou P., Yu J.G., Jaroniec M. All-Solid-State Z-Scheme Photocatalytic Systems. Adv. Mater., 2014, 26:4920-4935. [3] 李灿. 太阳能光催化制氢研究进展. 化学进展, 2009, 21(11):2285-2302. [4] Huang K., Zhang Q., et al. Ultraviolet Photoconductance of a Single Hexagonal WO3 Nanowire. Nano Res., 2010, 3:281-287. [5] Huang K., He D.Y., et al. Controllable synthesis of hexagonal WO3 nanostructures and their application in lithium batteries. J. Phys. D:Appl. Phys., 2008, 41:155417. [6] Yuan H.J., Chen Y.Q., Tang D.S., et al. Hydrothermal synthesis and chromic properties of hexagonal WO3 nanowires. Chin. Phys. B, 2011, 20:036103. [7] Gu Z.J., Yao J.N., et al. Controllable Assembly of WO3 Nanorods/Nanowires into Hierarchical Nanostructures. J. Phys. Chem. B, 2006, 110:23829-23836. [8] Bai S.L., Luo R.X., et al. Low-temperature hydrothermal synthesis of WO3 nanorods and their sensing properties for NO2. J. Mater. Chem., 2012, 22: 12643-12650. [9] Gu Z.J., Yao J.N., et al. Self-assembly of highly oriented one-dimensional h-WO3 nanostructures. Chem. Commun., 2005:3597-3599. [10] 王学文. 半导体异质结构光催化制氢材料的设计与研究进展. 化工新型材料, 2015, 43(5):14-18. [11] 张相辉. 太阳能光催化制氢体系研究进展. 河南大学学报(自然科学版), 2015, 45(3):274-284. [12] Jin J., Yu J.G., et al. A Hierarchical Z-Scheme CdS-WO3 Photocatalyst with Enhanced CO2 Reduction Activity. Small, 2015, 11(39):5262-5271. [13] Cui X.F., Jiang G.Y., et al. A photonic crystal-based CdS-Au-WO3 heterostructure for efficient visible-light photocatalytic hydrogen and oxygen evolution. RSC Adv., 2014, 4:15689-15694 [14] Yin X.L., Hu J.S., et al. Urchin-like Au@CdS/WO3 micro/nano heterostructure as a visible-light driven photocatalyst for efficient hydrogen generation. Chem. Commun., 2015, 51:13842-13845. [15] Wang X.W., Cheng H.M., et al. Enhanced photocatalytic hydrogen evolution by prolonging the lifetime of carriers in ZnO/CdS heterostructures. Chem. Commun., 2009:3452-3454. [16] Spoerke E.D., et al. Nanocrystal Layer Deposition: Surface-Mediated Templating of Cadmium Sulfide Nanocrystals on Zinc Oxide Architectures. J. Phys. Chem. C, 2009, 113: 16329-16336. [17] Xi G.C., Ye J.H., et al. In Situ Growth of Metal Particles on 3D Urchin-like WO3 Nanostructures. J. Am. Chem. Soc., 2012, 134:6508-6511.
3. 毕业设计(论文)进程安排
2015-12-16~2016-01-14 查阅文献,制定实验方案,完成开题报告 2016-01-14~2016-03-20 制备沿[001]方向生长的六方相WO3纳米棒 2016-03-21~2016-04-20 在WO3纳米棒上均匀附着一定量CdS纳米颗粒 2016-04-21~2016-05-31 WO3-CdS异质结构纳米晶测试表征 2016-06-01~2016-06-07 毕业论文的撰写 2016-06-08~2016-06-13 完成毕业论文的各项结束工作和毕业答辩