ESB/GDC双层电解质的制备及其性能研究任务书
2020-05-24 12:17:07
1. 毕业设计(论文)的内容和要求
固体氧化物燃料电池(sofcs)作为一种可以将燃料中具有的化学能直接转化为电能的发电装置,由于其具有洁净安全,能量转换效率高等优点越来越受到人们的重视。
传统的固体氧化物燃料电池的工作温度范围在800~1000℃,使用的电解质为8mol%y2o3掺杂稳定的zro2(ysz) ,其在高温范围具有良好的离子电导率和可以忽略不计的电子电导率。
但是随着固体氧化物燃料电池商业化的发展需求,燃料电池的工作温度必须首先降至中低温范围(400~800℃)。
2. 参考文献
[1] 王玲, 曾燕伟, 蔡铜祥. 固体氧化物燃料电池电解质材料的研究进展[J]. 电池, 2012, 42(3): 172-175. [2] 史可顺. 中温固体氧化物燃料电池电解质材料及其制备工艺的研究发展趋势[J]. 硅酸盐学报, 2008, 36(11): 1676-1688. [3] 窦仕川, 闫国庆. 单掺杂ESB电解质与双掺杂DWSB电解质的性能比较[J]. 广州化工, 2015, 43(11): 91-93. [4] 章蕾, 夏长荣. 低温固体氧化物燃料电池[J]. 化学进展, 2011, 23(2/3):430-439. [5] 周银, 马桂君, 刘红芹. 固体氧化物燃料电池材料的研究进展[J]. 化工新型材料, 2014, 42(3): 13-18. [6] 任玉敏, 杜泽学, 宁坤. 固体氧化物燃料电池电解质材料的研究进展[J]. 电源技术, 2015, 39(4): 852-854. [7] 王静任, 刘宏光, 彭开萍. 固体反应对钆掺杂二氧化铈和钇掺杂铈酸钡电解质电化学性能的影响[J]. 硅酸盐学报, 2015, 43(2): 189-194. [8] Huang J, Xie F, Wang C, et al. Development of solid oxide fuel cell materials for intermediate-to-low temperature operation. International Journal of Hydrogen Energy, 2012, 37(1): 877-883. [9] Lee K T, Jung D W, Camaratta M A, et al. Gd0.1Ce0.9O1.95/Er0.4Bi1.6O3 bilayered electrolytes fabricated by a simple colloidal route using nano-sized Er0.4Bi1.6O3 powders for high performance low temperature solid oxide fuel cells. Journal of power sources, 2012, 205: 122-128. [10] Lim H T, Virkar A V. Measurement of oxygen chemical potential in Gd2O3-doped ceria-Y2O3-stabilized zirconia bi-layer electrolyte, anode-supported solid oxide fuel cells. Journal of Power Sources, 2009, 192(2): 267-278. [11] Wachsman E D, Lee K T. Lowering the temperature of solid oxide fuel cells. Science, 2011, 334(6058): 935-939. [12] J. Hou, L. Bi, J. Qian, Z. Zhu, J. Zhang, W. Liu. High performance ceria-bismuth bilayer electrolyte low temperature solid oxide fuel cells (LT-SOFCs) fabricated by combining co-pressing with drop-coating. Journal of Materials Chemistry A, 2015, 3(19): 10219-10224. [13] Oh E O, Whang C M, Lee Y R, et al. Extremely thin bilayer electrolyte for solid oxide fuel cells (SOFCs) fabricated by chemical solution deposition (CSD). Advanced Materials, 2012, 24(25): 3373-3377. [14] Go Y B, Jacobson A J. Solid solution precursors to gadolinia-doped ceria prepared via a low-temperature solution route. Chemistry of Materials, 2007, 19(19): 4702-4709. [15] Zha S, Xia C, Meng G. Effect of Gd (Sm) doping on properties of ceria electrolyte for solid oxide fuel cells. Journal of Power Sources, 2003, 115(1): 44-48. [16] Gao Z, Zenou V Y, Kennouche D, et al. Solid oxide cells with zirconia/ceria bi-layer electrolytes fabricated by reduced temperature firing. Journal of Materials Chemistry A, 2015, 3(18): 9955-9964. [17] Goodenough J B. Oxide-ion electrolytes. Annual review of materials research, 2003, 33(1): 91-128. [18] Lee K T, Yoon H S, Wachsman E D. The evolution of low temperature solid oxide fuel cells. Journal of Materials Research, 2012, 27(16): 2063-2078. [19] Virkar A V. Theoretical Analysis of Solid Oxide Fuel Cells with Two-Layer, Composite Electrolytes: Electrolyte Stability. Journal of the Electrochemical Society, 1991, 138(5): 1481-1487. [20] Ahn J S, Camaratta M A, Pergolesi D, et al. Development of high performance ceria/bismuth oxide bilayered electrolyte SOFCs for lower temperature operation. Journal of the Electrochemical Society, 2010, 157(3): B376-B382.
3. 毕业设计(论文)进程安排
2015-12-16~2015-01-15 查阅文献,制定实验方案,完成开题报告 2015-01-15~2015-04-10 电解质纳米粉体的合成及双层电解质的制备 2015-04-11~2015-05-10 研究不同厚底比对双层电解质性能的影响 2015-05-11~2015-05-31 分析厚度比对双层电解质性能的影响规律,提出双层电解质合理的结构组成 2015-06-01~2015-06-13 毕业论文的撰写,完成毕业论文的各项结束工作和毕业答辩