氮掺杂石墨烯直接催化分解NO任务书
2020-05-25 23:42:02
1. 毕业设计(论文)的内容和要求
消除氮氧化物的污染已成为当前大气污染治理中最重要的课题之一。
催化分解法是利用催化剂把no直接分解为n2和o2,该法因为具有不产生二次污染、不消耗还原剂、经济性好、工艺简单等优点,受到人们的广泛关注。
常用的直接分解no的催化体系有:贵金属催化剂(pt,rh,pd等),金属氧化物(cuo,zno,co3o4等),分子筛(cu-zsm-5等)。
2. 参考文献
[1] R.K. Biroju, P.K. Giri, S. Dhara, K. Imakita, M. Fujii, Acs Applied Materials Interfaces 6 (2014) 377-387. [2] Y. Chen, B. Gao, J.-X. Zhao, Q.-H. Cai, H.-G. Fu, Journal of Molecular Modeling 18 (2012) 2043-2054. [3] C.H. Choi, M.W. Chung, H.C. Kwon, J.H. Chung, S.I. Woo, Applied Catalysis B-Environmental 144 (2014) 760-766. [4] H.-P. Cong, J.-F. Chen, S.-H. Yu, Chemical Society Reviews 43 (2014) 7295-7325. [5] D. Haag, H.H. Kung, Topics in Catalysis 57 (2014) 762-773. [6] X. Han, M.R. Funk, F. Shen, Y.-C. Chen, Y. Li, C.J. Campbell, J. Dai, X. Yang, J.-W. Kim, Y. Liao, J.W. Connell, V. Barone, Z. Chen, Y. Lin, L. Hu, Acs Nano 8 (2014) 8255-8265. [7] C.-T. Hsieh, W.-Y. Chen, Surface Coatings Technology 205 (2011) 4554-4561. [8] D.K. James, J.M. Tour, Accounts of Chemical Research 46 (2013) 2307-2318. [9] L. Jia, D.-H. Wang, Y.-X. Huang, A.-W. Xu, H.-Q. Yu, Journal of Physical Chemistry C 115 (2011) 11466-11473. [10] P.R. Kidambi, B.C. Bayer, R. Blume, Z.-J. Wang, C. Baehtz, R.S. Weatherup, M.-G. Willinger, R. Schloegl, S. Hofmann, Nano Letters 13 (2013) 4769-4778. [11] E. Kim, W.-G. Lee, J. Jung, Electronic Materials Letters 7 (2011) 261-264. [12] Y.S. Kim, K. Joo, S.-K. Jerng, J.H. Lee, D. Moon, J. Kim, E. Yoon, S.-H. Chun, Acs Nano 8 (2014) 2230-2236. [13] J. Lee, Y. Kim, H.-J. Shin, C. Lee, D. Lee, S. Lee, C.-Y. Moon, S.C. Lee, S.J. Kim, J.H. Ji, H.S. Yoon, S.C. Jun, Acs Applied Materials Interfaces 6 (2014) 12588-12593. [14] J.-H. Lee, K.-W. Song, M.-H. Park, H.-K. Kim, C.-W. Yang, Journal of Nanoscience and Nanotechnology 11 (2011) 6468-6471. [15] W.-G. Lee, E. Kim, J. Jung, Electronic Materials Letters 8 (2012) 609-616. [16] W.-G. Lee, E. Kim, J. Jung, Materials Chemistry and Physics 147 (2014) 452-460. [17] M. Lei, C. Liang, Y.J. Wang, K. Huang, C.X. Ye, G. Liu, W.J. Wang, S.F. Jin, R. Zhang, D.Y. Fan, H.J. Yang, Y.G. Wang, Electrochimica Acta 113 (2013) 366-372. [18] N. Li, Z. Wang, K. Zhao, Z. Shi, S. Xu, Z. Gu, Journal of Nanoscience and Nanotechnology 10 (2010) 6748-6751. [19] S. Li, Y. Hu, Q. Xu, J. Sun, B. Hou, Y. Zhang, Journal of Power Sources 213 (2012) 265-269. [20] Q. Liang, L. Zhang, M. Cai, Y. Li, K. Jiang, X. Zhang, P.K. Shen, Electrochimica Acta 111 (2013) 275-283. [21] F. Liu, J. Sun, L. Zhu, X. Meng, C. Qi, F.-S. Xiao, Journal of Materials Chemistry 22 (2012) 5495-5502. [22] W. Liu, S. Kraemer, D. Sarkar, H. Li, P.M. Ajayan, K. Banerjeet, Chemistry of Materials 26 (2014) 907-915. [23] S.O. Moussa, L.S. Panchakarla, M.Q. Ho, M.S. El-Shall, Acs Catalysis 4 (2014) 535-545. [24] J.H. Mun, B.J. Cho, Nano Letters 13 (2013) 2496-2499. [25] S.M. Oh, K.M. Oh, D. Trung Dung, H.-i. Lee, H.M. Jeong, B.K. Kim, Polymer International 62 (2013) 54-63. [26] H. Park, P.R. Brown, V. Buloyic, J. Kong, Nano Letters 12 (2012) 133-140. [27] J.-e. Park, Y.J. Jang, Y.J. Kim, M.-s. Song, S. Yoon, D.H. Kim, S.-J. Kim, Physical Chemistry Chemical Physics 16 (2014) 103-109. [28] W. Qian, P.A. Greaney, S. Fowler, S.-K. Chiu, A.M. Goforth, J. Jiao, Acs Sustainable Chemistry Engineering 2 (2014) 1802-1810. [29] S. Sarkar, S. Niyogi, E. Bekyarova, R.C. Haddon, Chemical Science 2 (2011) 1326-1333. [30] P.V. Shvets, J.M. Soon, A. Verger, A.N. Obraztsov, Journal of Nanoelectronics and Optoelectronics 8 (2013) 46-51. [31] S. Tang, H. Wang, Y. Zhang, A. Li, H. Xie, X. Liu, L. Liu, T. Li, F. Huang, X. Xie, M. Jiang, Scientific Reports 3 (2013). [32] Y. Tang, Z. Yang, X. Dai, D. Ma, Z. Fu, Journal of Physical Chemistry C 117 (2013) 5258-5268. [33] P. Van Dong, J. Lagoute, O. Mouhoub, F. Joucken, V. Repain, C. Chacon, A. Bellec, Y. Girard, S. Rousset, Acs Nano 8 (2014) 9403-9409. [34] X. Wan, K. Chen, J. Xu, Small 10 (2014) 4443-4454. [35] X. Wang, G. Meng, C. Zhu, Z. Huang, Y. Qian, K. Sun, X. Zhu, Advanced Functional Materials 23 (2013) 5771-5777. [36] Y.-z. Wang, Y. Wang, New Carbon Materials 29 (2014) 231-235. [37] Z. Wang, Y. Du, F. Zhang, Z. Zheng, Y. Zhang, C. Wang, Journal of Solid State Electrochemistry 17 (2013) 99-107. [38] R.S. Weatherup, H. Amara, R. Blume, B. Dlubak, B.C. Bayer, M. Diarra, M. Bahri, A. Cabrero-Vilatela, S. Caneva, P.R. Kidambi, M.-B. Martin, C. Deranlot, P. Seneor, R. Schloegl, F. Ducastelle, C. Bichara, S. Hofmann, Journal of the American Chemical Society 136 (2014) 13698-13708. [39] D. Wei, B. Wu, Y. Guo, G. Yu, Y. Liu, Accounts of Chemical Research 46 (2013) 106-115. [40] K. Yan, L. Fu, H. Peng, Z. Liu, Accounts of Chemical Research 46 (2013) 2263-2274. [41] Z. Yan, Z. Peng, J.M. Tour, Accounts of Chemical Research 47 (2014) 1327-1337. [42] L. Yang, W. Luo, G. Cheng, Acs Applied Materials Interfaces 5 (2013) 8231-8240. [43] Q. Yuan, B.I. Yakobson, F. Ding, Journal of Physical Chemistry Letters 5 (2014) 3093-3099. [44] X. Zhang, L. Wang, J. Xin, B.I. Yakobson, F. Ding, Journal of the American Chemical Society 136 (2014) 3040-3047. [45] X. Zhang, Z. Xu, L. Hui, J. Xin, F. Ding, Journal of Physical Chemistry Letters 3 (2012) 2822-2827. [46] Y. Zhang, L. Zhang, C. Zhou, Accounts of Chemical Research 46 (2013) 2329-2339. [47] Y. Zhao, G. Wang, H.-C. Yang, T.-L. An, M.-J. Chen, F. Yu, L. Tao, J.-K. Yang, T.-B. Wei, R.-F. Duan, L.-F. Sun, Chinese Physics B 23 (2014). [48] Y. Zhao, Y. Zhou, B. Xiong, J. Wang, X. Chen, R. O'Hayre, Z. Shao, Journal of Solid State Electrochemistry 17 (2013) 1089-1098. [49] Y. Zhong, Z. Mo, L. Yang, S. Liao, Progress in Chemistry 25 (2013) 717-725. [50] J. Zong, Q. Jin, C. Huang, Journal of Solid State Electrochemistry 17 (2013) 1339-1348.
3. 毕业设计(论文)进程安排
起讫日期 设计(论文)各阶段工作内容 15.12.22~15.12.26 课题任务书 15.12.27~16.1.15 文献综述、英文翻译与开题报告 16.2.20~16.3.1 试验材料准备 16.3.1~16.3.15 设计实验方案、进行实验 16.3.15~16.5.2 实验 16.5.3~16.5.8 实验、中期答辩 16.5.9~16.5.30 实验、整理实验数据、毕业论文撰写 16.5.31~16.6.10 毕业论文撰写、答辩