登录

  • 登录
  • 忘记密码?点击找回

注册

  • 获取手机验证码 60
  • 注册

找回密码

  • 获取手机验证码60
  • 找回
毕业论文网 > 任务书 > 化学化工与生命科学类 > 制药工程 > 正文

二氧化锰/埃洛石纳米管改性阳极对微生物燃料电池性能的影响任务书

 2020-05-25 23:42:53  

1. 毕业设计(论文)的内容和要求

论文内容

MFC利用有机废水废弃物作为原料进行产电,既有利于环境整治,又可回收能源,降低成本,是一项集环境效益、社会效益和经济效益于一体的新型环保产业。本文以典型的单极室MFC为研究对象,研究了二氧化锰/埃洛石纳米管改性阳极对MFC的影响,以期为MFC阳极改性提供实践、理论基础。

主要内容包括:

一.课题背景

二.微生物燃料电池的原理和组成

三.二氧化锰/埃洛石纳米管改性阳极对MFC性能影响研究

四.结果与讨论

论文要求

1.掌握和运用微生物燃料电池的基本原理,能全面的探讨阳极对MFC产电的影响,及探讨阳极改性对微生物吸附量的影响。

2.制定比较详细的研究大纲,理清撰写的基本思路;运用比较的方法完成

课题研究和论文写作。

3.完成的论文,应该观点正确,论点鲜明,论据充分,论证有力,条理清晰,语句流畅,具有较好的可读性。

2. 参考文献

[1] H. Liu, B.E. Logan, Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane. Environmental science amp; technology. 38 (2004) 4040-4046.

[2] Y. Zou, C. Xiang, L. Yang, L.X. Sun, F. Xu, Z. Cao, A mediatorless microbial fuel cell using polypyrrole coated carbon nanotubes composite as anode material, International Journal of Hydrogen Energy. 33 (2008) 4856-4862.

[3] M. Ghasemi, W.R.W. Daud, N.Mokhtarian, A. Mayahi, M. Ismail, F. Anisi, M. Sedighi, J. Alam, The effect of nitric acid, ethylenediamine, and diethanolamine modified polyaniline nanoparticles anode electrode in a microbial fuel cell, International Journal of Hydrogen Energy. 38 (2013) 9525-9532.

[4] N.W. Zhu, X. Chen, T. Zhang, P.X. Wu, P. Li, J.H. Wu, Improved performance of membrane free single-chamber air-cathode microbial fuel cells with nitric acid and ethylenediamine surface modified activated carbon fiber felt anodes, Bioresour. Technol. 102 (2011) 422#8722;426.

[5] X. Wang, S.A. Cheng, Y.J. Feng, M.D. Merrill, T. Saito, B.E. Logan, Use of carbon mesh anodes and the effect of different pretreatment methods on power production in microbial fuel cells, Environ. Sci. Technol. 43 (2009) 6870#8722;6874.

[6] S.A. Cheng, B.E. Logan, High hydrogen yield from renewable resources using an improved beamr system, Electrochem. Commun. 9 (2007) 492#8722;496.

[7] X.H. Tang, K. Guo, H.R. Li, Z.W. Du, J.L. Tian, Electrochemical treatment of graphite to enhance electron transfer from bacteria to electrodes, Bioresour. Technol. 102 (2011) 3558#8722;3560.

[8] Y. Qiao, C.M. Li, S.J. Bao, Q.L. Bao, Carbon nanotube/polyaniline composite as anode material for microbial fuel cells, Journal of Power Sources. 170 (2007) 79-84.

[9] X. Peng, H. Yu, X. Wang, Q. Zhou, S. Zhang, L. Geng, J. Sun, Z. Cai, Enhanced performance and capacitance behavior of anode by rolling Fe3O4 into activated carbon in microbial fuel cells, Bioresource technology. 121 (2012) 450-453.

[10] Y. Fu, J. Yu, Y. Zhang, Y. Meng, Graphite coated with manganese oxide/multiwall carbon nanotubes composites as anodes in marine benthic microbial fuel cells, Applied Surface Science. 317 (2014) 84-89.

[11] L. Zhang, C. Liu, L. Zhuang, W. Li, S. Zhou, J. Zhang, Manganese dioxide as an alternative cathodic catalyst to platinum in microbial fuel cells, Biosensors and Bioelectronics. 24 (2009) 2825-2829.

[12] D. Rawtani, Y. K. Agrawal, Multifarious applications of halloysite nanotubes: a review, Rev. Adv. Mater. Sci. 30 (2012) 282#8211;295.

[13] P. Zheng, Y. Du, X. Ma, Selective fabrication of iron oxide particles in halloysite lumen, Materials Chemistry and Physics. 151 (2015) 14-17.

[14] C. Li, J. Wang, S. Feng, Z. Yang, S. Ding, Low-temperature synthesis of heterogeneous crystalline TiO2#8211;halloysite nanotubes and their visible light photocatalytic activity, Journal of Materials Chemistry A. 1 (2013) 8045-8054.

[15] W. Xing, L. Ni, P. Huo, Z. Lu, X. Liu, Y. Luo, Y. Yan, Preparation high photocatalytic activity of CdS/halloysite nanotubes (HNTs) nanocomposites with hydrothermal method, Applied Surface Science. 259 (2012) 698-704.

[16] Q. Wang, J. Zhang, A. Wang, Alkali activation of halloysite for adsorption and release of ofloxacin, Applied Surface Science. 287 (2013) 54-61.

[17] F.J. Garc#237;a, S. Garc#237;a Rodr#237;guez, A. Kalytta, A. Reller, Study of natural halloysite from the Dragon Mine, Utah (USA), Zeitschrift f#252;r anorganische und allgemeine Chemie. 635 (2009) 790-795.

[18] S. Khilari, S. Pandit, D. Das, D. Pradhan, Manganese cobaltite/polypyrrole nanocomposite-based air-cathode for sustainable power generation in the single-chambered microbial fuel cells, Biosensors and Bioelectronics. 54 (2014) 534-540.

[19] P. Liang, X. Huang, M.Z. Fan, X.X. Cao, C. Wang, Composition and distribution of internal resistance in three types of microbial fuel cells, Applied Microbiology and Biotechnology . 77 (2007) 551-558.

[20] T. Song, X. Wu, C.C. Zhou, Effect of different acclimation methods on the performance of microbial fuel cells using phenol as substrate, Bioprocess and biosystems engineering. 37 (2014) 133-138.

3. 毕业设计(论文)进程安排

起讫日期

设计(论文)各阶段工作内容

备 注

2015.12.31前

下达课题任务,查阅文献,做好开题前期准备工作;

2015.12.31-2016.1.15

完善课题研究方案,完成外文翻译、文献综述和开题报告工作,组织开题论证和初期检查工作;

2016.1.15-2016.6.7

课题的实验、设计、调研及结果的处理与分析,完成毕业论文和答辩PPT的写作;

2016.6.7-2016.6.14

课题论文答辩;

2016.6.14-2016.7.8

完成毕业设计(论文)教学质量的分析、总结和评优工作,做好材料的收集、整理和归档工作。

剩余内容已隐藏,您需要先支付 10元 才能查看该篇文章全部内容!立即支付

企业微信

Copyright © 2010-2022 毕业论文网 站点地图