环氧大豆油的工艺优化任务书
2020-05-26 20:40:51
1. 毕业设计(论文)的内容和要求
环氧大豆油是用大豆油经过氧化处理后制得的一种化工产品,是一种使用广泛的聚氯乙烯无毒增塑剂兼稳定剂。
同时,其环氧基团经开环后得到多元醇,可进一步用于润滑油或聚氨酯材料的制备。
由于反应原料中有双氧水,常规间歇釜式反应存在安全隐患,且产品品质一般;微流场技术在环氧大豆油的合成中具有安全、高效、高质、连续化等优势。
2. 参考文献
[1] Sun, L. J.; Yao, C.; Zheng, H. F.; Lin, J. A novel direct synthesis of polyol from soybean oil. Chin. Chem. Lett. 2012, 23 (8), 919-922. [2] Bandyopadhyay-Ghosh, S.; Ghosh, S. B.; Sain, M. Synthesis of soy-polyol by two step continuous route and development of soy-based polyurethane foam. J. Polym. Environ. 2010, 18 (3), 437-442. [3] Petrovi#263;, Z. S. Polyurethanes from vegetable oils. Polym. Rev. 2008, 48 (1), 109-155. [4] Yang, L. T.; Zhao, C. S.; Dai, C. L.; Fu, L. Y.; Lin, S. Q. Thermal and mechanical properties of polyurethane rigid foam based on epoxidized soybean oil. J. Polym. Environ. 2012, 20 (1), 230-236. [5] Hazmi, A. S. A.; Aung, M. M.; Abdullah, L. C.; Salleh, M. Z.; Mahmood, M. H. Producing Jatropha oil-based polyol via epoxidation and ring opening. Ind. Crop. Prod. 2013, 50, 563-567. [6] Desroches, M.; Escouvois, M.; Auvergne, R.; Caillol, S.; Boutevin, B. From vegetable oils to polyurethanes: synthetic routes to polyols and main industrial products. Polym. Rev. 2012, 52 (1), 38-79. [7] Gu, R.; Konar, S.; Sain, M. Preparation and characterization of sustainable polyurethane foams from soybean oils. J. Am. Oil Chem. Soc. 2012, 89 (11), 2103-2111. [8] Rojek, P.; Prociak, A. Effect of different rapeseed-oil-based polyols on mechanical properties of flexible polyurethane foams. J. Appl. Polym. Sci. 2012, 125 (4), 2936-2945. [9] He, W.; Fang, Z.; Ji, D.; Chen, K.; Wan, Z.; Li, X.; Gan, H.; Tang, S.; Zhang, K.; Guo, K. Epoxidation of soybean oil by continuous micro-flow system with continuous separation. Org. Process Res. Dev. 2013, 17 (9), 1137-1141. [10] Schwalbe, T.; Autze, V.; Hohmann, M.; Stirner, W. Novel innovation systems for a cellular approach to continuous process chemistry from discovery to market. Org. Process Res. Dev. 2004, 8 (3), 440-454. [11] Watts, P.; Wiles, C. Micro reactors, flow reactors and continuous flow synthesis. J. Chem. Res. 2012, 36 (4), 181-193. [12] Kawaguchi, T.; Miyata, H.; Ataka, K.; Mae, K.; Yoshida, J. Room-temperature Swern oxidations by using a microscale flow system. Angew. Chem. Int. Ed. 2005, 44 (16), 2413-2416. [13] Serra, C. A.; Cortese, B.; Khan, I. U.; Anton, N.; Croon, M. H. J. M.; Hessel, V.; Ono, T.; Vandamme, T. Coupling microreaction technologies, polymer chemistry, and processing to produce polymeric micro and nanoparticles with controlled size, morphology, and composition. Macromol. React. Eng. 2013, 7 (9), 414-439. [14] Zhu, X. Determination of hydroxyl value of epoxy-containing polyester by acetyl chloride method. Chem. Propell. Polym. Mater. 2007, 5 (1), 65-66. [15] Guo, Y.; Hardesty, J. H.; Mannari, V. M.; Massingill, J. L. Hydrolysis of epoxidized soybean oil in the presence of phosphoric acid. J. Am. Oil Chem. Soc. 2007, 84 (10), 929-935. [16] Ji, D.; Fang, Z.; Wan, Z. D.; Chen, H. C.; He, W.; Li, X. L.; Guo, K. Rigid polyurethane foam based on modified soybean oil. Adv. Mater. Res. 2013, 724-725, 1681-1684. [17] Wu, S.; Soucek, M. D. Oligomerization mechanism of cyclohexene oxide. Polymer 1998, 39 (15), 3583-3586. [18] Tu, Y. C.; Suppes, G. J.; Hsieh, F. H. Thermal and mechanical behavior of flexible polyurethane-molded plastic films and water-blown foams with epoxidized soybean oil. J. Appl. Polym. Sci. 2009, 111 (3), 1311-1317. [19] Luo, X.; Mohanty, A.; Misra, M. Lignin as a reactive reinforcing filler for water-blown rigid biofoam composites from soy oil-based polyurethane. Ind. Crop. Prod. 2013, 47, 13-19. [20] Pan, X.; Saddler, J. N. Effect of replacing polyol by organosolv and kraft lignin on the property and structure of rigid polyurethane foam. Biotechnol. Biofuels 2013, 6, DOI 10.1186/1754-6834-6-12. [21] Lee, C. S.; Ooi, T. L.; Chuah, C. H.; Ahmad, S. Rigid polyurethane foam production from palm oil-based epoxidized diethanolamides. J. Am. Oil Chem. Soc. 2007, 84 (12), 1161-1167. [22] Tu, Y. C.; Kiatsimkul, P.; Suppes, G.; Hsieh, F. H. Physical properties of water-blown rigid polyurethane foams from vegetable oil-based polyols. J. Appl. Polym. Sci. 2007, 105 (2), 453-459. [23] Tan, S.; Abraham, T.; Ference, D.; Macosko, C. W. Rigid polyurethane foams from a soybean oil-based polyol. Polymer 2011, 52 (13), 2840-2846. [24] Zhang, C.; Ding, R.; Kessler, M. R. Reduction of epoxidized vegetable oils: a novel method to prepare bio-based polyols for polyurethanes. Macromol. Rapid Commun. 2014, 35 (11), 1068-1074.
3. 毕业设计(论文)进程安排
起讫日期 设计(论文)各阶段工作内容 1.1-1.15 确定毕业设计的课题及相关资料的查找 2.22-3.10 实验方案的设计 3.10-3.20 实验材料的准备 3.21-5.10 工艺合成 5.10-6.5 实验数据处理与结果分析 5.20-6.10 毕业论文书写
您可能感兴趣的文章
- 用于重复性光热/热力学协同治疗的NIR-II 光响应抗菌凝胶外文翻译资料
- 氧化石墨烯/银/胶原涂层的光动力和物理作用协 同杀死细菌外文翻译资料
- x,β-不饱和羰基化合物的区域选择性自由 基x-硼酰化直接合成0-硼酰羰基分子外文翻译资料
- 通过光氧催化作用实现有机硼合成的新型自由基硼化途径外文翻译资料
- 光导的单电子转移过程在烯烃与氮杂环卡宾硼烷的硼基化反应中作为- -种授权的基本原理外文翻译资料
- 用于数字光处理3D打印的可重复打印聚合物外文翻译资料
- 1, 6-烯基自由基硼化/环化级联反应合成硼处理的杂环和碳环外文翻译资料
- 羟基环戊烯酮的Morita-Bayllis-Hillman反应研究外文翻译资料
- 莫米洛替尼的新型实用合成路线外文翻译资料
- 用从突变的PrPGApx04中分离出的青霉素G酰化酶高效合成β-内酰胺类抗生素外文翻译资料