水在层状石墨烯膜中毛细现象的分子动力学模拟任务书
2020-06-09 22:34:10
1. 毕业设计(论文)的内容和要求
以纳微尺度下流体传质为基础的微孔膜构筑在化工分离、能源等领域有着广泛的应用与巨大的发展前景。
而目前针对流体纳微尺度受限流动的机理尚不清晰。
在这一尺度下,分子动力学模拟方法以其易操作、低成本等特点成为深入探究流体传质机理的有力手段。
2. 参考文献
1. Radha B, Esfandiar A, Wang F C, et al. Molecular transport through capillaries made with atomic-scale precision[J]. Nature, 2016, 538(7624). 2. Henrich B, Cupelli C, Santer M, et al. Continuum concepts in nanoscale capillary impregnation[J]. New Journal of Physics, 2008, 10(11):113022. 3. Sergi D, Scocchi G, Ortona A. Molecular dynamics simulations of the contact angle between water droplets and graphite surfaces[J]. Fluid Phase Equilibria, 2012, 332(44):173-177. 4. Washburn E W. The Dynamics of Capillary Flow[J]. Physical Review, 1921, 17(3):273-283. 5. Celebi K, Buchheim J, Wyss R M, et al. Ultimate permeation across atomically thin porous graphene.[J]. Science, 2014, 344(6181):289-292. 6. Martic G, Gentner F, Seveno D, et al. A Molecular Dynamics Simulation of Capillary Imbibition[J]. Langmuir, 2013, 18(21):7971-7976. 7. Cupelli C, Henrich B, Glatzel T, et al. Dynamic capillary wetting studied with dissipative particle dynamics[J]. New Journal of Physics, 2008, 10(4):043009. 8. Semashko O V, Brodskaya E N. Computer Simulation of the Adsorption of Water in Graphite Microcapillaries[J]. Colloid Journal, 2004, 66(1):71-77. 9. Jeje A A. Rates of spontaneous movement of water in capillary tubes[J]. Journal of Colloid Interface Science, 1979, 69(3):420-429. 10. Garaj S, Hubbard W, Reina A, et al. Graphene as a subnanometre trans-electrode membrane.[J]. Nature, 2010, 467(7312):190. 11. 文玉华, 朱如曾, 周富信,等. 分子动力学模拟的主要技术[J]. 力学进展, 2003, 33(1):65-73. 12. 陈小燕. 纳米通道内流体的分子动力学研究[D]. 中国科学技术大学, 2008.
3. 毕业设计(论文)进程安排
2月中旬至2月下旬:完成收集文献资料,了解课题背景,外文文献翻译,撰写毕业论文开题报告及文献综述; 3月上旬至3月中旬:学习LAMMPS软件及相关工具软件; 3月中下旬至5月下旬:以”水在层状石墨烯膜间毛细浸入”为例进行分子动力学模拟,编辑后处理程序对流体密度分布进行分析; 6月初至6月中旬:整理模拟数据,撰写论文,并为论文答辩作准备。