登录

  • 登录
  • 忘记密码?点击找回

注册

  • 获取手机验证码 60
  • 注册

找回密码

  • 获取手机验证码60
  • 找回
毕业论文网 > 任务书 > 材料类 > 材料科学与工程 > 正文

材料表面结构与性质对受限水结构和扩散行为的影响任务书

 2020-06-10 22:43:22  

1. 毕业设计(论文)的内容和要求

论文的研究内容:对石墨和氧化钛不同表面进行结构非均一和化学非均一改性,对粗糙度不同的石墨和氧化钛狭缝,以及表面化学改性后的狭缝中水的结构和扩散性质进行研究,了解在不同狭缝孔宽度下,表面粗糙度和表面化学性质对受限于碳狭缝内水的结构性质和扩散行为的影响。

论文要求:得到不同粗糙度石墨狭缝中水的结构性质如何随粗糙度的不同而发生变化,不同粗糙度的表面影响水分子扩散的规律。亲水表面和疏水表面的狭缝对水的分布和扩散的影响。

2. 参考文献

1. Zangi, R. and A.E. Mark, Bilayer ice and alternate liquid phases of confined water. The Journal of Chemical Physics, 2003. 119(3): p. 1694.
2. Liu, B., et al., Channel morphology effect on water transport through graphene bilayers. Sci Rep, 2016. 6: p. 38583.
3. Bhatia, S.K., Characterizing Structural Complexity in Disordered Carbons: From the Slit Pore to Atomistic Models. Langmuir, 2017. 33(4): p. 831-847.
4. Andreev, S., D. Reichman, and G. Hummer, Effect of flexibility on hydrophobic behavior of nanotube water channels. J Chem Phys, 2005. 123(19): p. 194502.
5. Jabbarzadeh, A., J.D. Atkinson, and R.I. Tanner, Effect of the wall roughness on slip and rheological properties of hexadecane in molecular dynamics simulation of Couette shear flow between two sinusoidal walls. Physical Review E, 2000. 61(1): p. 690-699.
6. Xu, B., et al., Effect of wall roughness on fluid transport resistance in nanopores. J Chem Phys, 2011. 135(14): p. 144703.
7. Zhao, J., et al., Electrolyte solution transport in electropolar nanotubes. J Phys Condens Matter, 2010. 22(31): p. 315301.
8. Luzar, A. and D. Chandler, Hydrogen-bond kinetics in liquid water. Nature, 1996. 379(6560): p. 55-57.
9. Krekelberg, W.P., et al., Impact of surface roughness on diffusion of confined fluids. J Chem Phys, 2011. 135(15): p. 154502.
10. Daub, C.D., et al., The influence of molecular-scale roughness on the surface spreading of an aqueous nanodrop. Faraday Discussions, 2010. 146: p. 67.
11. Mittal, J. and G. Hummer, Interfacial thermodynamics of confined water near molecularly rough surfaces. Faraday Discussions, 2010. 146: p. 341.
12. Rathgen, H. and F. Mugele, Microscopic shape and contact angle measurement at a superhydrophobic surface. Faraday Discussions, 2010. 146: p. 49.
13. Radha, B., et al., Molecular transport through capillaries made with atomic-scale precision. Nature, 2016. 538(7624): p. 222-225.
14. Zangi, R. and A.E. Mark, Monolayer ice. Phys Rev Lett, 2003. 91(2): p. 025502.
15. Mutat, T., J. Adler, and M. Sheintuch, Multicomponent ballistic transport in narrow single wall carbon nanotubes: analytic model and molecular dynamics simulations. J Chem Phys, 2011. 134(4): p. 044908.
16. Algara-Siller, G., et al., Square ice in graphene nanocapillaries. Nature, 2015. 519(7544): p. 443-5.
17. Nelson, D., T. Piran, and S. Weinberg, Statistical mechanics of membranes and surfaces. 2004: World Scientific.
18. Hussain, H., et al., Structure of a model TiO2 photocatalytic interface. Nat Mater, 2016.
19. Zhang, Y., et al., Temperature-dependent structural properties of water molecules confined in TiO2 nanoslits: Insights from molecular dynamics simulations. Fluid Phase Equilibria, 2016. 430: p. 169-177.
20. Zhu, W., et al., Two-dimensional interlocked pentagonal bilayer ice: how do water molecules form a hydrogen bonding network? Phys. Chem. Chem. Phys., 2016. 18(21): p. 14216-14221.
21. Jakobtorweihen, S., et al., Understanding the loading dependence of self-diffusion in carbon nanotubes. Phys Rev Lett, 2005. 95(4): p. 044501.
22. Cicero, G., et al., Water confined in nanotubes and between graphene sheets: a first principle study. J Am Chem Soc, 2008. 130(6): p. 1871-8.
23. Dalla Bernardina, S., et al., Water in Carbon Nanotubes: The Peculiar Hydrogen Bond Network Revealed by Infrared Spectroscopy. J Am Chem Soc, 2016. 138(33): p. 10437-43.
24. Joseph, S. and N.R. Aluru, Why are carbon nanotubes fast transporters of water? Nano Lett, 2008. 8(2): p. 452-8.
25. 赵梦尧, 杨雪平, and 杨晓宁, 石墨烯狭缝受限孔道中水分子的分子动力学模拟. 物理化学学报, 2015(08): p. 1489-1498.
26. 杨雪平, 杨晓宁, and 刘淑延, 水通过石墨烯纳米通道的流动行为及其结构性质的分子动力学模拟(英文). Chinese Journal of Chemical Engineering, 2015(10): p. 1587-1592.

3. 毕业设计(论文)进程安排

2016.12.1~12.23 检索国内外有关文献,并进行文献综述整理,翻译英文文献;

2016.12.24~2017.01.13 确定研究思路,撰写开题报告;

2017.01.14~03.20,完成平整石墨狭缝和粗糙石墨狭缝中水体系的计算和数据分析,并撰写毕业论文绪论部分,撰写学术论文待发表;

剩余内容已隐藏,您需要先支付 10元 才能查看该篇文章全部内容!立即支付

企业微信

Copyright © 2010-2022 毕业论文网 站点地图