登录

  • 登录
  • 忘记密码?点击找回

注册

  • 获取手机验证码 60
  • 注册

找回密码

  • 获取手机验证码60
  • 找回
毕业论文网 > 任务书 > 化学化工与生命科学类 > 生物工程 > 正文

核黄素修饰电极强化微生物燃料电池产电性能的研究任务书

 2020-06-26 19:52:17  

1. 毕业设计(论文)的内容和要求

(一) 整体要求 1、文献查阅 掌握文献查阅的一般方法,学会利用计算机在中国期刊网、维普数据网、超星数字图书馆、美国化学学会(acs)、ca 、sci等检索资源上查阅与微生物燃料电池相关的文献。

2、文献阅读及综述 仔细阅读与所做课题相关的中英文文献,了解相关背景以及目前国内外的研究动态,撰写文献综述。

3、明确实验任务,拟定实验方案 根据所查文献的内容,结合大学所学课程相关知识,确定实验内容及方案,拟定科学可行的研究计划。

剩余内容已隐藏,您需要先支付后才能查看该篇文章全部内容!

2. 参考文献

[1] 王毅波. 21世纪理想的能源-氢能[J]. 能源研究与信息, 2003, 19(2): 63~68. [2] Gil G. C, Chang I. S, Kim B. H, et al. Operational parameters affecting the performannce of a mediator-less microbial fuel cell[J]. Biosensors Bioelectronics, 2003, 18(4): 327~334. [3] Logan B. E, Hamelers B, Rozendal R, et al. Microbial fuel cells: methodology and technology[J]. Environmental Science Technology, 2006, 40(17):5181~5192. [4] 强琳, 袁林江, 丁擎. 微生物燃料电池处理生活污水产电特性研究[J]. 水资源与水工程学报, 2010, 21(4): 51~54. [5] Rabaey K, Verstraete W. Microbial fuel cells: novel biotechnology for energy generation[J]. Trends in Biotechnology, 2005, 23(6): 291~298. [6] Gorby Y. A, Yanina S, McLean J. S, et al. Electrically Conductive Bacterial Nanowires Produced by Shewanella oneidensis Strain MR-1 and Other Microorganisms[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(30): 11358~11363. [7] Rabaey K, Boon N, Houml;fte M, et al. Microbial phenazine production enhances electron transfer in biofuel cells[J]. Environmental Science Technology, 2005, 39(9): 3401~3408. [8] Reguera G, Mccarthy K. D, Mehta T, et al. Extracellular electron transfer via microbial nanowires[J]. Nature, 2005, 435(7045): 1098~1101. [9] 宝玥, 吴霞琴. 生物燃料电池的研究进展[J]. 电化学, 2004, 10(1): 1~8. [10] 施冬艳. 过表达甲基转移酶基因对微生物燃料电池性能的影响[D]. 南京:南京工业大学, 2013. [11] Feng C, Li F, Liu H, et al. A dual-chamber microbial fuel cell with conductive film-modified anode and cathode and its application for the neutral electro-Fenton process[J]. Electrochimica Acta, 2010, 55(6): 2048~2054. [12] Aelterman P, Rabaey K, Pham H. T, et al. Continuous electricity generation at high voltages and currents using stacked microbial fuel cells[J]. Communications in Agricultural Applied Biological Sciences, 2006, 71(1): 63~66. [13] 曹效鑫, 梁鹏, 黄霞. "三合一"微生物燃料电池的产电特性研究[J]. 环境科学学报, 2006, 26(8): 1252~1257. [14] Liu H, Logan B. E. Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane[J]. Environmental Science Technology, 2004, 38(14): 4040~4046. [15] Oh S. E, Logan B. E. Voltage reversal during microbial fuel cell stack operation[J]. Journal of Power Sources, 2007, 167(1): 11~17. [16] He Z, Minteer S. D, Angenent L T. Electricity generation from artificial wastewater using an upflow microbial fuel cell[J]. Environmental Science Technology, 2005, 39(14): 5262~5267. [17] Moon H, Chang I. S, Jang J. K, et al. Residence time distribution in microbial fuel cell and its influence on COD removal with electricity generation[J]. Biochemical Engineering Journal, 2006, 27(1): 59~65. [18] 王维大, 李浩然, 冯雅丽,等. 微生物燃料电池的研究应用进展[J]. 化工进展, 2014, 33(5): 1067~1076. [19] Rodrigues M. L, Oliveira T. F, Pereira I. A, et al. X-ray structure of the membrane-bound cytochrome c, quinol dehydrogenase NrfH reveals novel haem coordination[J]. Embo Journal, 2006, 25(24): 5951~5960. [20] Schamphelaire L. D, Verstraete W. Revival of the biological sunlight-to-biogas energy conversion system[J]. Biotechnology Bioengineering, 2009, 103(2): 296~304. [21] Rezaei F, Richard T. L, Brennan R. A, et al. Substrate-enhanced microbial fuel cells for improved remote power generation from sediment-based systems[J]. Environmental Science Technology, 2007, 41(11): 4053~4058. [22] Potter M. C. Electrical Effects Accompanying the Decomposition of Organic Compounds[J]. Proceedings of the Royal Society B Biological Sciences, 1911, 84(571): 260~276. [23] Doohyun P, Zeikus J G. Electricity generation in microbial fuel cells using neutral red as an electronophore[J]. Applied Environmental Microbiology, 2000, 66(4): 1292~1297. [24] Roller S. D, Bennetto H. P, Delaney G M, et al. Electron-transfer coupling in microbial fuel cells: 1. comparison of redox-mediator reduction rates and respiratory rates of bacteria[J]. Journal of Chemical Technology Biotechnology Biotechnology, 1984, 34(1): 3#8211;12. [25] Delaney G. M, Bennetto H. P, Mason J. R, et al. Electron-transfer coupling in microbial fuel cells. 2. performance of fuel cells containing selected microorganism#8212;mediator#8212;substrate combinations[J]. Journal of Chemical Technology Biotechnology Biotechnology, 2010, 34(1): 13~27. [26] Logan B. E. Peer Reviewed: Extracting Hydrogen and Electricity from Renewable Resources[J]. Environmental Science Technology, 2004, 38(9): 160A~167A. [27] Kim B. H, Ikeda T, Park H. S, et al. Electrochemical activity of an Fe(III)-reducing bacterium, Shewanella putrefaciens IR-1, in the presence of alternative electron acceptors[J]. Biotechnology Techniques, 1999, 13(7): 475~478. [28] Meth#233; B. A, Nelson K. E, Eisen J. A, et al. Genome of Geobacter sulfurreducens: Metal Reduction in Subsurface Environments[J]. Science, 2003, 302(5652): 1967~1969. [29] Reguera G, Mccarthy K. D, Mehta T, et al. Extracellular electron transfer via microbial nanowires[J]. Nature, 2005, 435(7045): 1098~1101. [30] Oh S. E, Logan B. E. Hydrogen and electricity production from a food processing wastewater using fermentation and microbial fuel cell technologies[J]. Water Research, 2005, 39(19): 4673~4682. [31] Peixoto L, Min B, Martins G, et al. In situ microbial fuel cell-based biosensor for organic carbon[J]. Bioelectrochemistry, 2011, 81(2): 99~103. [32] Lovley D. R. Microbial fuel cells: novel microbial physiologies and engineering approaches[J]. Current Opinion in Biotechnology, 2006, 17(3): 327~332. [33] Heidelberg J. F, Paulsen I. T, Nelson K. E, et al. Genome sequence of the dissimilatory metal ion-reducing bacterium Shewanella oneidensis[J]. Nature Biotechnology, 2002, 20(11): 1118~1123. [34] Yong X. Y, Shi D. Y, Chen Y. L, et al. Enhancement of bioelectricity generation by manipulation of the electron shuttles synthesis pathway in microbial fuel cells[J]. Bioresource Technology, 2013, 152(1): 220~224. [35] Rabaey K, Boon N, Siciliano S. D, et al. Biofuel cells select for microbial consortia that self-mediate electron transfer [J]. Appl Environ Microbiol, 2004, 70(9): 5373~5382. [36] Holmes D. E, Chaudhuri S. K, Nevin K. P, et al. Microarray and genetic analysis of electron transfer to electrodes in Geobacter sulfurreducens[J]. Environmental Microbiology, 2006, 8(10): 1805~1815. [37] Harfoot C. G, Mcgrath J. E. Reductive dehalogenation of halocarboxylic acids by the phototrophic genera Rhosdospirillum[J]. Applied Environmental Microbiology, 1997, 63(8): 3333~3335. [38] Zuo Y, Xing D, Regan J. M, et al. Isolation of the exoelectrogenic bacterium Ochrobactrum anthropi YZ-1 by using a U-tube microbial fuel cell[J]. Applied Environmental Microbiology, 2008, 74(10): 3130~3137.

3. 毕业设计(论文)进程安排

2018.1.20-2018.3.1 查阅文献,熟悉课题,写开题报告 2018.3.2-2018.3.14 熟悉实验相关技能操作 2018.3.15-2018.5.30 实验的系统进行 2018.6.1-2018.6.15 整理实验数据,总结实验结果,论文写作

剩余内容已隐藏,您需要先支付 10元 才能查看该篇文章全部内容!立即支付

企业微信

Copyright © 2010-2022 毕业论文网 站点地图