大数据解决方案及其应用研究文献综述
2020-06-28 20:12:55
文 献 综 述
一:选题的背景和意义
1.1选题的背景
”大数据”是指以多元形式,自许多来源搜集而来的庞大数据组,往往具有实时性。从技术上看,大数据与云计算的关系就像一枚硬币的正反面一样密不可分。大数据必然无法用单台的计算机进行处理,必须采用分布式计算架构。它的特色在于对海量数据的挖掘,但它必须依托云计算的分布式处理、分布式数据库、云存储和/或虚拟化技术。(在维克托#8226;迈尔-舍恩伯格及肯尼斯#8226;库克耶编写的《大数据时代》中大数据指不用随机分析法(抽样调查)这样的捷径,而采用所有数据的方法)大数据的4V特点:Volume(大量)、Velocity(高速)、Variety(多样)、Value(价值)。从海量数据中”提纯”出有用的信息,这对网络架构和数据处理能力而言也是巨大的挑战。简言之,对于很多行业而言,如何从各种各样类型的数据中,快速获得有价值信息的能力,是成为赢得竞争的关键。
1.2国内外研究现状
近年来,大数据迅速发展成为工业界、学术界甚至世界各国政府高度关注的热点。《自然(Nature)》和《科学(Science)》等杂志相继出版专刊来探讨大数据带来的挑战和机遇。著名管理咨询公司麦肯锡声称,”数据已经渗透到当今每一个行业和业务职能领域,成为重要的生产因素。人们对于大数据的挖掘和运用,预示着新一波生产力增长和消费者盈余浪潮的到来”。在这样的背景下,美国政府2012年宣布投资2亿美元启动”大数据研究和发展计划”,这是继1993年美国宣布”信息高速公路”计划后的又一次重大科技发展部署。美国政府认为大数据是”未来的新石油”,一个国家拥有数据的规模和运用数据的能力将成为综合国力的重要组成部分,对数据的占有和控制将成为国家间和企业间新的争夺焦点。大数据已成为社会各界关注的新焦点,”大数据时代”已然来临。
1.3发展趋势
根据IDC的”数字宇宙(Digital Universe)”报告,预计到2020年,全球数据使用量将达到35.2ZB,在如此海量的数据面前,处理数据的效率就是企业的生命。大数据往往以数据流的形式动态、快速地产生和演变,具有很强的时效性,只有把握好对数据流的掌控才能有效利用这些数据。4)数据真伪难辨,可靠性要求更严格。大数据的集合和高密度的测量将令”错误发现”的风险增长。斯坦福大学的统计学教授Trevor Hastie称,如果想要在庞大的数据”干草垛”中找到一根有意义的”针”,那么所将面临的问题就是”许多稻草看起来就像是针一样”。5)数据价值大,但密度低、挖掘难度大。价值密度的高低与数据总量的大小成反比。如何通过强大的机器算法更迅速地完成数据的价值”提取”成为目前大数据背景下亟待解决的难题。
二:研究内容
2.1大数据的感知与表示