不同抗冲改性剂增韧改性PVC树脂性能的研究任务书
2020-06-28 20:20:55
1. 毕业设计(论文)的内容和要求
主要内容包括:本课题的目的在于探索常用的几种抗冲改性剂对pvc树脂增韧效果的差异。
pvc具有良好的耐腐蚀性、难燃性,较小的热导率以及极佳的绝缘性,可广泛用于建材、管材、薄膜和绝缘材料等。
但是pvc质硬而脆,其应用受到一定限制,因此我们要提高它的韧性来符合实际应用要求。
2. 参考文献
[1] J. Yin, R. Chang, Y. Shui, X. Zhao, Preparation and enhanced electro-responsive characteristic of reduced graphene oxide/polypyrrole composite sheet suspensions, Soft Matter 9 (2013) 7468#8211;7478. [2] W. Gao, Y. Zheng, J. Shen, S. Guo, Electrical properties of polypropylene-based composites controlled by multilayered distribution of conductive particles, ACS Appl. Mater. Interfaces 7 (2015) 1541#8211;1549. [3] Y. Zhang, L. Wang, Y. Xu, ZrO2 solid superacid porous shell/void/TiO2 core particles (ZVT)/polyvinylidene fluoride (PVDF) composite membranes with anti-fouling performance for sewage treatment, Chem. Eng. J. 260 (2015) 258#8211;268. [4] A. Susanna, L. Armelao, E. Callone, S. Dir#232;, M. D#8217;Arienzo, B. Di Credico, L. Giannini, T. Hanel, F. Morazzoni, R. Scotti, ZnO nanoparticles anchored to silica filler. A curing accelerator for isoprene rubber composites, Chem. Eng. J. 275 (2015) 245#8211;252. [5] A.A. Vasileiou, M. Kontopoulou, H. Gui, A. Docoslis, Correlation between the length reduction of carbon nanotubes and the electrical percolation threshold of melt compounded polyolefin composites, ACS Appl. Mater. Interfaces 7 (2015) 1624#8211;1631. [6] H.R. Pant, P. Pokharel, M.K. Joshi, S. Adhikari, H.J. Kim, C.H. Park, C.S. Kim, Processing and characterization of electrospun graphene oxide/polyurethane composite nanofibers for stent coating, Chem. Eng. J. 270 (2015) 336#8211;342. [7] M.-C. Li, X. Deng, U.-R. Cho, Study on the structure, thermal properties, and mechanical properties of PMMA-grafted SBR/clay nanocomposites, J. Compos. Mater. 44 (2010) 1279#8211;1288. [8] S. Varanasi, Z.-X. Low, W. Batchelor, Cellulose nanofibre composite membranes #8211; biodegradable and recyclable UF membranes, Chem. Eng. J. 265 (2015) 138#8211; 146. [9] J. Sapkota, M. Jorfi, C. Weder, E.J. Foster, Reinforcing poly(ethylene) with cellulose nanocrystals, Macromol. Rapid Commun. 35 (2014) 1747#8211;1753. [10] Q. Sun, A. Mandalika, T. Elder, S.S. Nair, X. Meng, F. Huang, A.J. Ragauskas, Nanocomposite film prepared by depositing xylan on cellulose nanowhiskers matrix, Green Chem. 16 (2014) 3458#8211;3462. [11] Y. Pan, M.Z. Wang, H. Xiao, Biocomposites containing cellulose fibers treated with nanosized elastomeric latex for enhancing impact strength, Compos. Sci. Technol. 77 (2013) 81#8211;86. [12] M.Q. Zhang, M.Z. Rong, H.B. Zhang, K. Friedrich, Mechanical properties of low nano-silica filled high density polyethylene composites, Polym. Eng. Sci. 43 (2003) 490#8211;500. [13] Z. Zhang, X. Zhao, J. Zhang, S. Chen, Effect of nano-particles-induced phase inversion on largely improved impact toughness of PVC/a-methylstyreneacrylonitrile copolymer (a-MSAN)/CPE-matrix composites, Compos. Sci. Technol. 86 (2013) 122#8211;128. [14] Z. Zhang, S. Chen, J. Zhang, Improvement in the heat resistance of poly(vinyl chloride) profile with styrenic polymers, J. Vinyl Additive Technol. 17 (2011) 85#8211;91. [15] Z. Zhang, B. Li, S. Chen, J. Zhang, X. Jin, Poly(vinyl chloride)/poly(amethylstyrene- acrylonitrile)/acrylic resin ternary blends with enhanced toughness and heat resistance, Polym. Adv. Technol. 23 (2012) 336#8211;342. [16] Z. Zhang, J. Zhang, H. Liu, High-impact toughness poly(vinyl chloride)/(amethylstyrene)- acrylonitrile-butadiene-styrene copolymer/acrylic resin blends: thermal properties and toughening mechanism, J. Vinyl Additive Technol. (2014). [17] H. Liu, W. Song, F. Chen, L. Guo, J. Zhang, Interaction of microstructure and interfacial adhesion on impact performance of polylactide (PLA) ternary blends, Macromolecules 44 (2011) 1513#8211;1522. [18] J.J. La Scala, J.A. Orlicki, C. Winston, E.J. Robinette, J.M. Sands, G.R. Palmese, The use of bimodal blends of vinyl ester monomers to improve resin processing and toughen polymer properties, Polymer 46 (2005) 2908#8211;2921. [19] B. Yin, L.-P. Li, Y. Zhou, L. Gong, M.-B. Yang, B.-H. Xie, Largely improved impact toughness of PA6/EPDM-g-MA/HDPE ternary blends: the role of core#8211;shell particles formed in melt processing on preventing micro-crack propagation, Polymer 54 (2013) 1938#8211;1947. [20] Z. Zhang, X. Zhao, S. Wang, J. Zhang, W. Zhang, Inducing a network structure of rubber phase: an effective approach to toughen polymer without sacrificing stiffness, RSC Adv. 4 (2014) 60617#8211;60625.
3. 毕业设计(论文)进程安排
起讫日期 设计(论文)各阶段工作内容 备 注 2.20-3.5 文献查询及文献翻译 3.6-3.12 完成开题报告并开题 3.13-4.16 进行实验工作 4.17-4.23 毕业设计中期检查 4.24-6.4 继续实施实验并撰写论文 6.5-6.18 论文答辩
您可能感兴趣的文章
- 可聚合高分子模板增强制备高耐久超疏水涂层文献综述
- PVC/ABS合金的制备及性能研究开题报告
- 设计具有增强的赝电容及电催化性能的Co3O4/NiCo2O4双壳纳米笼结构外文翻译资料
- 光子上转换手性液晶:显著放大的上转换圆偏振发光外文翻译资料
- 氧空位型LiV3O8纳米片的快速稳定储锂性能研究外文翻译资料
- 应用于高性能钙钛矿太阳能电池的电子传输层的前体工程外文翻译资料
- 复合材料科学与技术 ——含碳纳米管的多孔导电弹性体复合材料悬浮在共连续聚合物的狭窄孔隙中的混合纳米复合材料外文翻译资料
- 一种用于先进锂硫电池源自聚罗丹宁纤维素的氮硫双掺杂碳外文翻译资料
- 短玻璃纤维增强聚丙烯控制界面和力学性能参数外文翻译资料
- 含Ca0的LaCO.0H纳米齿轮及其发光和脱NOx性能外文翻译资料