Al-Cu合金凝固过程枝晶生长的结构演化研究任务书
2020-06-29 20:41:07
1. 毕业设计(论文)的内容和要求
课题简介: 近年来,随着计算机技术的迅速发展,铸造充型凝固过程的数值模拟取得了很大的发展,而依据基本的凝固理论对显微组织的形成进行模拟是当前凝固模拟研究的一大趋势。
al-cu 合金具有高强度、高韧性及耐热性,应用广泛,但其铸造性能差,容易产生裂纹和缩松等。
进行枝晶生长过程模拟可以预测其凝固组织,进而预测其力学性能。
2. 参考文献
[1] J. Lapin. TiAl-based Alloys: Present Status and Future Perspectives. Hradec nad Moravic#237;, 2009, 5:19-21 [2] F. Roters, P. Eisenlohr, L. Hantcherli, et al. Overview of Vonstitutive Laws, Kinematics, Homogenization and Multiscale Methods in Crystal Plasticity Finite-element Modeling: Theory, Experiments, Applications. Acta Materialia, 2010, 58(4): 1152-1211 [3]Wang L, Wei Y, Yu F, et al. Phase‐field simulation of dendrite growth under forced flow conditions in an Al-Cu welding molten pool[J]. Crystal Research Technology, 2016, 51(10):602-609. [4]W.J. Zhang, U.Lorenz, F. Appel. Recovery. Recrystallization and Phase Transformations During Thermomechanical Processing and Treatment of TiAl-based Alloys. Acta Materialia, 2000, 48(11): 2803-2813 [5]W. Loser, H.G. Lindenkreuz, R. Hermann, et al. Recalescence Behaviour of Bnary Ti#8211;Al and Ternary Ti#8211;Al#8211;Nb Undercooled Melts. Materials Science and Engineering A, 2005, 413-414:398#8211;402 [6]J.L. Fan, X.Z. Li, Y.Q. Su, et al. Directional Solidification of Ti#8211;49 at.%Al Alloy. Applied Physics A, 2011, 105: 239-248 [7]K. Watanabe, S. Awaji, M. Motokawa, et al. 15 T Cryocooled Nb3Sn Superconducting Magnet with a 52 mm Room Temperature Bore. Jpn. J. Appl. Phys., 1998, 37:203 [8]K. Watanabe, S. Awaji, J. Sakuraba, et al. 11 T liquid helium-free superconducting magnet. Cryogenics, 1996, 36(12):1019 [9]W. W. Mullins, R. F. Sekerka. Morphological Stability of a Particle Growing by Diffusing of Heat Flow. Journal of Applied Physics, 1963, 34(2): 323-329 [10] W. W. Mullins, R. F. Sekerka. Stability of a Planar Interface during Solidification of a Dilute Binary Alloy. Journal of Applied Physics, 1964,35(2): 444-451 [11]刘永长. 快速凝固 Ti-Al 包晶合金的相选择与控制. 西北工业大学博士论文, 2000 [12]王狂飞. Ti-Al 合金定向凝固组织演化的数值模拟. 哈尔滨工业大学博士论文, 2007 [13]Jingjie Guo, Xinzhong Li, Yanqing Su, et al. Phase-field simulation of structure evolution at high growth velocities during directional solidification of Ti55Al45 alloy. Intermetallic, 2005, 13:275-279 [14] G. Horvay, J.W. Cahn. Dendritic and Spheroadal Growth. Acta Metallurgica, 1961,9:695-705 [15]J. Lipton, M.E. Glicksman, W. Kurz. Dendrite Growth into Undercooled Alloy Melts. Materials Science and Engineering A, 1984, A65: 57-63 [16]J. Lipton, W. Kurz, R. Trivedi. Rapid Dendrite Growth in Undercooled Alloys. Acta Metallurgica, 1987, 35(4): 957-964 [17]Wang L, Wei Y, Yu F, et al. Phase‐field simulation of dendrite growth under forced flow conditions in an Al#8211;Cu welding molten pool[J]. Crystal Research Technology, 2016, 51(10):602-609. [18]Ferreira A F, Paradela K G, Felipe Junior P, et al. Phase-Field Simulation of Microsegregation and Dendritic Growth During Solidification of Hypoeutectic Al-Cu alloys[J]. Mat Res, 2017, 20(ahead). [19]Sarkis C. Phase-field modeling of dendritic solidification for an Al-4.5wt%Cu atomized droplet using an anisotropic adaptive mesh[J]. 2016. [20]Na T, Zhang L, Tang Y, et al. Effect of temperature gradient on microstructure evolution in Ni#8211;Al#8211;Cr bond coat/substrate systems: A phase-field study[J]. Surface Coatings Technology, 2015, 261:364-374.
3. 毕业设计(论文)进程安排
起讫日期 设计(论文)各阶段工作内容 2017.12.22-2018.3.1 查阅文献,完成外文翻译,完成开题报告; 2018.3.2-2018.3.22 制定研究方案,了解相场模型,并学习相应方程的求解; 2018.3.23-2018.4.26 完成micress软件的案例学习; 2018.4.29-2018.5.5 撰写中期报告 参加中期检查答辩; 2018.5.6-2018.5.25 完成Al-Cu合金相场程序的编写,并对结果进行分析; 2018.5.26-2018.6.13 整理数据,撰写论文,准备答辩, 参加毕业论文答辩