石英砂目数对油井水泥力学性能的影响任务书
2020-06-30 21:11:04
1. 毕业设计(论文)的内容和要求
本课题主要研究不同粒径及掺量下的石英粉对油井水泥石力学性能的影响,对石英粉在油井水泥中的作用机理做初步的分析,测试掺入石英粉的油井水泥三大基本性能(密度、流动度、初终凝),并与未掺入石英砂的油井水泥进行对比。
2. 参考文献
[1] 张景富, 俞庆森, 徐明, et al. G级油井水泥的水化及硬化 [J]. 硅酸盐学报, 2002, 30(2): 167. [2] 王景建, 冯克满, 许前富, et al. 高温下加砂G级油井水泥强度发展规律研究 [J]. 长江大学学报(自科版), 2011, 08(3): 52-4. [3] 张景富, 徐明, 闫占辉, et al. 高温条件下G级油井水泥原浆及加砂水泥的水化和硬化 [J]. 硅酸盐学报, 2008, 36(7): 939. [4] Zhang J. F., Zhu J. J., Dai K., et al. Effect of temperature and additives on hydration products of Class G oil well cement [J]. Journal of Daqing Petroleum Institute, 2004, 28(5): 94-7. [5] 马小龙. 顺南区块高温高压气井固井技术 [J]. 内蒙古石油化工, 2017, 43(6): 95-7. [6] 许建华, 胡瑞华, 滕春鸣, et al. 元坝103H超深水平井固井工艺技术研究 [J]. 长江大学学报(自科版), 2013, 10(8): 64-6. [7] 陈超, 邹传元, 李鹏飞, et al. 塔河油田YK7CH双台阶水平井固井技术 [J]. 中外能源, 2011, 16(10): 79-82. [8] 宁河清. TS2井超低密度水泥浆固井技术 [J]. 天然气勘探与开发, 2016, 39(1): 77-9. [9] 何祖清, 马开华, 丁士东, et al. 普光气田大湾构造开发井完井难点与对策 [J]. 石油机械, 2010, 38(12): 21-4. [10] 孙坤忠, 陶谦, 周仕明, et al. 丁山区块深层页岩气水平井固井技术 [J]. 石油钻探技术, 2015, 3): 55-60. [11] Reddy B. R., Zhang J., Ellis M. Cement Strength Retrogression Issues in Offshore Deep Water Applications - Do We Know Enough for Safe Cementing? [M]. Offshore Technology Conference. 2016. [12] 路飞飞, 李斐, 田娜娟, et al. 复合加砂抗高温防衰退水泥浆体系 [J]. 钻井液与完井液, 2017, 34(4): 85-9. [13] Eilers L. H., Nelson E. B., Moran L. K. High-Temperature Cement Compositions - Pectolite, Scawtite, Truscottite, or Xonotlite: Which Do You Want? [J]. 1983, [14] 杨智光, 崔海清, 肖志兴. 深井高温条件下油井水泥强度变化规律研究 [J]. 石油学报, 2008, 29(3): 435. [15] Eilers L. H., Root R. L. Long-Term Effects of High Temperature on Strength Retrogression of Cements [J]. 1976, spe-5871( [16] Eilers L. H., Root R. L. Long-Term Effects Of High Temperature On Strength Retrogression Of Cements [M]. Society of Petroleum Engineers. 1974. [17] Zhang Y., Chen D., Luo Y., et al. Laboratory study on grain size of silica in strength recession of heavy oil thermal recovery cement [J]. Oil Drilling Production Technology, 2010, 32(5): 44-. [18] Bezerra, Martinelli U. T., Melo A. E., et al. The strength retrogression of special class Portland oilwell cement [J]. Ceramica, 2011, 57(342): 150-4. [19] Pernites R. B., Santra A. K. Portland cement solutions for ultra-high temperature wellbore applications [J]. Cem Concr Compos, 2016, 72(89-103. [20] Palou M., #381;ivica V., Ifka T., et al. Effect of hydrothermal curing on early hydration of G-Oil well cement [J]. J Therm Anal Calorim, 2013, 116(2): 597-603. [21] 柯昌君. 低碱度钢渣水热反应特性及其机理的研究 [J]. 建筑材料学报, 2007, 10(2): 142-7. [22] Taylor H. F. W. Cement Chemistry [M]. Thomas Telford, 1997. [23] Hu X. L., Yanagisawa K., Onda A., et al. Stability and phase relations of dicalcium silicate hydrates under hydrothermal conditions [J]. J Ceram Soc Jpn, 2006, 114(1326): 174-9. [24] Baret J.-F., Daccord G., Yearwood J. 6 Cement/Formation Interactions [M]//Erik B. N. Developments in Petroleum Science. Elsevier. 1990: 6-1-6-17. [25] 丁树修. 高温地热井水泥水化硬化的研究 [J]. 硅酸盐学报, 1996, 24(4): 10. [26] 袁润章. 中国土木建筑百科辞典:工程材料 [M]. 中国建筑工业出版社, 2008. [27] 杨南如, 岳文海. 无机非金属材料图谱手册 [M]. 武汉工业大学出版社, 2000. [28] Morey G. W., Fournier R. O., Rowe J. J. The solubility of quartz in water in the temperature interval from 25#176; to 300#176; C ☆ [J]. Geochimica Et Cosmochimica Acta, 1962, 26(10): 1029-40. [29] Weill D. F., Fyfe W. S. The solubility of quartz in H 2 O in the range 1000#8211;4000 bars and 400#8211;550#176;C [J]. Geochimica Et Cosmochimica Acta, 1964, 28(8): 1243-55. [30] Brandl A., Bray W., Doherty D. Technically And Economically Improved Cementing System With Sustainable Components [J]. 2010, [31] 格鲁特. 岩石手册 [M]. 科学技术出版社, 1956. [32] Chen C., Marshall W. Amorphous silica solubilities IV. Behavior in pure water and aqueous sodium chloride, sodium sulfate, magnesium chloride, and magnesium sulfate solutions up to [J]. 1982, [33] 张生, 李统锦. 二氧化硅溶解度方程和地温计 [J]. 地质科技情报, 1997, 1): 53-8. [34] 何真, 王磊, 邵一心, et al. 脱钙对水泥浆体中C-S-H凝胶结构的影响 [J]. 建筑材料学报, 2011, 14(3): 293-8. [35] Chen J. J., Thomas J. J., Jennings H. M. Decalcification shrinkage of cement paste [J]. Cement Concrete Research, 2006, 36(5): 801-9. [36] Coleman N. J., Brassington D. S. Synthesis of Al-substituted 11 #197; tobermorite from newsprint recycling residue: a feasibility study [J]. Materials Research Bulletin, 2003, 38(3): 485-97. [37] J. Krakowiak K., Wilson W., James S., et al. Inference of the phase-to-mechanical property link via coupled X-ray spectrometry and indentation analysis: Application to cement-based materials [J]. Cem Concr Res, 2015, 67(Supplement C): 271-85. [38] Pang X., Meyer C., Funkhouser G. P., et al. Depressurization damage of oil well cement cured for 3days at various pressures [J]. Constr Build Mater, 2015, 74(Supplement C): 268-77. [39] Krakowiak K. J., Thomas J. J., Musso S., et al. Nano-chemo-mechanical signature of conventional oil-well cement systems: Effects of elevated temperature and curing time [J]. Cement Concrete Research, 2015, 67(67): 103-21. [40] Thomas J., James S., Ortega J. A., et al. Fundamental Investigation of the Chemical and Mechanical Properties of High-Temperature-Cured Oilwell Cements [M]. Offshore Technology Conference. 2012. [41] 顾军, 向阳, 王学良, et al. 高温高压井水泥浆的研究与实践顾军 [J]. 钻井液与完井液, 2003, 20(2): 31. [42] Nelson E. B. Well Cementing [M]. Elsevier Science, 1990. [43] Biagioni C., Merlino S., Bonaccorsi E. The tobermorite supergroup: a new nomenclature [J]. Mineralogical Magazine, 2015, 79(2): 485-95. [44] Moon J. Experimental and Theoretical Studies on Mechanical Properties of Complex Oxides in Concrete [J]. Dissertations Theses - Gradworks, 2013, 21(4): 92-128. [45] Kurdowski W. Cement and Concrete Chemistry [M]. Springer Netherlands, 2014. [46] Radenti G., Ghiringhelli L. Cementing materials for geothermal wells [J]. Geothermics, 1972, 1(3): 119-23. [47] Bensted J. S-curve effect in oilwell cement compressive strength development under hydrothermal conditions [J]. Cem Concr Res, 1995, 25(2): 240-2. [48] Costa B. L. D. S., Souza G. G. D., Freitas J. C. D. O., et al. Silica content influence on cement compressive strength in wells subjected to steam injection [J]. Journal of Petroleum Science Engineering, 2017, [49] Wang Q., Wang D., Chen H. The role of fly ash microsphere in the microstructure and macroscopic properties of high-strength concrete [J]. Cem Concr Compos, 2017, 83(125-37. [50] Eilers L., Nelson E. EFFECT OF SILICA PARTICLE SIZE ON DEGRADATION OF SILICA STABILIZED PORTLAND CEMENT [J]. Trans Soc Pet Eng AIME; (United States), 1979, spe-7893( [51] Wang C. W., Chen X., Wei X. T., et al. Can nanosilica sol prevent oil well cement from strength retrogression under high temperature? [J]. Constr Build Mater, 2017, 144(574-85. [52] Horszczaruk E., Sikora P., Cendrowski K., et al. The effect of elevated temperature on the properties of cement mortars containing nanosilica and heavyweight aggregates [J]. Constr Build Mater, 2017, 137(420-31.
3. 毕业设计(论文)进程安排
2017.12.1-2018.1.10 完成文献翻译及开题报告,并进行一部分实验; 2018.3.1-2018.4.15 继续完成剩下的实验; 2018.4.20-2018.5.10 进行数整理及论文撰写;
您可能感兴趣的文章
- 蒸养纤维掺杂高铁低钙水泥混凝土的抗海水冲磨性能研究文献综述
- TIPA对水泥-锂渣体系力学性能和水化性能的影响外文翻译资料
- TEA对锂渣-水泥复合粘结剂流变性能及水化性能的影响外文翻译资料
- 硫酸铝无碱液体促进剂的效果研究烷醇胺对硅酸盐水泥水化过程的影响外文翻译资料
- 新型C-A-S-H/PCE纳米复合材料:设计表征和对水泥水化的影响外文翻译资料
- 工业中碳捕获技术以及以水泥回转窑作为核心的吸附再生器外文翻译资料
- Ca/Al层状双氢氧化物的制备及其结构对水泥早期强度的影响外文翻译资料
- 蒸汽养护后混凝土养护方法对混凝土机械强度和透气性的影响外文翻译资料
- 含白云石或石灰石的偏高岭土水泥在相组成与抗压强度的异同外文翻译资料
- 与硅质铁尾矿结合的混凝土的耐久性外文翻译资料