锰基脱硝催化剂低温抗水影响研究任务书
2020-06-30 21:51:21
1. 毕业设计(论文)的内容和要求
我国是世界第一大能源消耗国,并且其能源结构仍以煤炭、石油、天然气等化石燃料为主导,化石燃料的燃烧将不可避免地产生nox。
nox是主要的大气污染物之一,是形成酸雨、光化学烟雾的主要原因。
随着我国废气排放标准日益严格,水泥、陶瓷等行业由于低温烟气处理技术效率低而面临着严重的环保压力。
2. 参考文献
1 Sang, M.L., K.H. Park and S.C. Hong, MnOx/CeO2-TiO2 mixed oxide catalysts for the selective catalytic reduction of NO with NH3 at low temperature. Chemical Engineering Journal, 2012. 195-196(195-196): p. 323-331. 2 Jin, R., et al., Low-temperature selective catalytic reduction of NO with NH3 over Mn-Ce oxides supported on TiO2 and Al2O3: a comparative study. Chemosphere, 2010. 78(9): p. 1160-1166. 3 Tian, Q., et al., SO2 Poisoning Behaviors of Ca-Mn/TiO2 Catalysts for Selective Catalytic Reduction of NO with NH3 at Low Temperature. Journal of Nanomaterials, 2015. 2014(4): p. 1-6. 4. Liu, C., et al., Manganese oxide-based catalysts for low-temperature selective catalytic reduction of NOx with NH3: A review. Applied Catalysis A General, 2016. 522: p. 54-69. 5 Mousavi, S.M., et al., Characterization and activity of alkaline earth metals loaded CeO2-MOx (M= Mn, Fe) mixed oxides in catalytic reduction of NO. Materials Chemistry Physics, 2014. 143(3): p. 921-928. 6 Lee, S.M., et al., Effect of the Mn oxidation state and lattice oxygen in Mn-based TiO2 catalysts on the low-temperature selective catalytic reduction of NO by NH3. Journal of the Air Waste Management Association, 2012. 62(9): p. 1085. 7 Min, K., et al., Manganese oxide catalysts for NOx reduction with NH3 at low temperatures. Applied Catalysis A General, 2007. 327(2): p. 261-269. 8 Dong, W.K., K.B. Nam and S.C. Hong, Influence of tungsten on the activity of a Mn/Ce/W/Ti catalyst for the selective catalytic reduction of NO with NH3 at low temperatures. Applied Catalysis A General, 2015. 497: p. 160-166. 9 Liu, C., et al., MnOx -CeO2 shell-in-shell microspheres for NH3-SCR de-NOx at low temperature. Catalysis Communications, 2016. 86: p. 36-40. 10 Zhang, L., et al., Design of meso-TiO2@MnO(x)-CeO(x)/CNTs with a core-shell structure as DeNO(x) catalysts: promotion of activity, stability and SO2-tolerance. Nanoscale, 2013. 5(20): p. 9821-9. 11. Song, D., et al., Selective catalytic oxidation of ammonia over MnOx#8211;TiO2 mixed oxides. Rsc Advances, 2016. 6(91): p. 88117-88125. 12 Wu, X., et al., Nitrate storage behavior of Ba/MnOx-CeO2 catalyst and its activity for soot oxidation with heat transfer limitations. Journal of Hazardous Materials, 2010. 181(1): p. 722-728. 13 Xiong, Y., et al., Effect of metal ions doping (M = Ti4 , Sn4 ) on the catalytic performance of MnOx /CeO2 catalyst for low temperature selective catalytic reduction of NO with NH3. Applied Catalysis A General, 2015. 495(1): p. 206-216. 14 Mukherjee, D., et al., Crucial role of titanium dioxide support in soot oxidation catalysis of manganese doped ceria. Catalysis Science Technology, 2017. 7. 15 Yang, S., et al., MnOx supported on Fe-Ti spinel: A novel Mn based low temperature SCR catalyst with a high N2 selectivity. Applied Catalysis B Environmental, 2016. 181: p. 570-580. 16 Li, Y., et al., Novel hollow microspheres MnxCo3#8722;xO4 (x#8201;=#8201;1, 2) with remarkable performance for low-temperature selective catalytic reduction of NO with NH3. Journal of Sol-Gel Science and Technology, 2016: p. 1-10. 17 Si, Z., et al., Structure, acidity and activity of CuOx/WOx-ZrO2 catalyst for selective catalytic reduction of NO by NH3. Journal of Catalysis, 2010. 271(1): p. 43-51. 18. Lei, C., et al., DRIFT Study of CuO-CeO2-TiO2 Mixed Oxides for NOx Reduction with NH3 at Low Temperatures. Acs Applied Materials Interfaces, 2014. 6(11): p. 8134. 19. Tang, C., H. Zhang and L. Dong, Ceria-based catalysts for low-temperature selective catalytic reduction of NO with NH3. Catalysis Science Technology, 2016. 6(5): p. 1248-1264. 20. Lu, X., et al., Low-temperature selective catalytic reduction of NOx with NH3 over cerium and manganese oxides supported on TiO2-graphene. Chemical Engineering Journal, 2015. 260(12): p. 776-784. 21 Lin, F., et al., Catalytic oxidation of NO by O2 over CeO2-MnOx: SO2 poisoning mechanism. Rsc Advances, 2016. 6(37). 22 Liu, C., et al., MnOx-CeO2 shell-in-shell microspheres for NH3-SCR de-NOx at low temperature. Catalysis Communications, 2016. 86: p. 36-40. 23 Qi, G., R.T. Yang and R. Chang, MnOx-CeO2 mixed oxides prepared by co-precipitation for selective catalytic reduction of NO with NH3 at low temperatures. Applied Catalysis B Environmental, 2004. 51(2): p. 93-106. 24. Boningari, T., et al., Influence of elevated surface texture hydrated titania on Ce-doped Mn/TiO2 catalysts for the low-temperature SCR of NOx under oxygen-rich conditions. Journal of Catalysis, 2015. 325: p. 145-155.
3. 毕业设计(论文)进程安排
起讫日期 设计(论文)各阶段工作内容 备 注 2016.12.23~2016.12.28 课题任务书 2016.12.28~2017.1.12 外文翻译、开题报告 2017.2.21~2017.4.9 设计实验方案、进行实验 2017.4.10~2017.5.2 实验 2017.5.3~2017.5.8 实验、中期答辩 2017.5.9~2017.5.30 实验、整理实验数据、毕业论文撰写 2017.5.31~2017.6.10 毕业论文撰写、答辩