基于超磁致伸缩致动器与柔顺放大机构的旋转型激振器设计与研究毕业论文
2021-02-27 14:18:40
摘 要
Abstract II
第一章 绪论 1
1.1 课题的研究背景及意义 1
1.2激振器的研究现状 1
1.2.1国外激振器研究现状 1
1.2.2国内激振器研究现状 2
1.3论文的主要研究内容 2
第二章 激振器的总体结构设计 4
2.1 超磁致材料与磁致伸缩效应 4
2.2激振器的设计需要注意的问题 4
2.2激振器的总体结构设计 5
2.3激振器的工作原理 6
2.4控制机理 7
2.5本章小结 7
第三章 超磁致伸缩致动器的设计 8
3.1GMM棒的选型 8
3.2磁场的分布 9
3.3线圈的设计 11
3.4散热系统的设计 12
3.5 GMM棒轴向预压力设计 14
3.本章小结 14
第四章 柔顺放大机构的设计与有限元仿真分析 15
4.1柔顺机构简介 15
4.2有限元分析及ANSYS仿真软件介绍 15
4.3柔顺放大机构的设计 15
4.4模态分析原理及步骤 17
4.5柔顺放大机构的模态分析 18
4.6本章小结 20
第五章 振动头的设计与有限元仿真分析 21
5.1振动头结构尺寸设计 21
5.2旋转型振动头模态分析 21
5.3谐响应分析的原理与步骤 23
5.4旋转型振动头的谐响应分析 24
5.5本章小结 24
第六章 环境影响分析及经济性分析 26
6.1环境影响分析 26
6.2经济性分析 26
6.3本章小结 26
第七章 结论与展望 27
7.1结论 27
7.2展望 27
参考文献 29
致谢 31
摘要
振动加工技术的出现,使得传统加工工艺的局限从多个方面得到了突破,解决了许多传统加工过程中遇到的难题,其优势在于可加工难加工材料(如高强度材料、脆性材料、粘性材料等)、难加工结构(如弱刚度结构、难达到结构、微孔、斜孔、阶梯深孔等)、难加工表面等。激振器是振动加工的核心技术,目前许多振动加工设备利用的是超声振动加工,本课题拟研究设计一种新型旋转型电磁式激振器用于振动加工,以增加振动加工技术的设备选择多样性。
激振器振动的产生离不开致动器的驱动,而传统的电致致动器具有伸缩位移量小、输出力小、响应慢等缺陷,并且必须高电压驱动、设计复杂,不能满足目前高新技术快速发展的要求,而利用磁致伸缩材料(Giant Magnetostrictive Material.简称 GMM)所研发制造的超磁致伸缩制动器,不仅突破了电致致动器的局限,纳米级的精度、微妙级响应速度、输出力大、只需低至几伏至几十伏的电压驱动,而且设计较为简单,电-机转换效率高,是其他材料无法比拟的。
基于上述背景,本课题拟利用超磁致材料的扭转效应(Wiedeman效应)设计出一种基于超磁致伸的旋转型激振器,超磁致伸缩致动器在直流脉冲线圈的驱动下产生高频旋转运动,经柔顺放大机构放大该旋转位移形成高频旋转振动,通过振动头的输出,产生合理的旋转型机械振动激励输出,可用于施加在工作对象上产生高频动态的旋转型振动激励。设计完成后通过ANSYS15.0对该激振器进行仿真测试优化,对激振器内的可动部分,主要包含柔顺放大机构与旋转型振动头,进行模态分析、谐响应分析等,得到了其振动特性,固有频率以及共振频率范围。
关键字:超磁致伸缩、柔顺放大机构、旋转型激振器、模态分析、谐响应分析
Abstract
The emergence of vibration processing technology, making the limitations of traditional processing technology from a number of aspects of a breakthrough to solve many of the traditional processing problems encountered, the advantage lies in the processing of difficult materials (such as high-strength materials, brittle materials, Materials, etc.), difficult to process structure (such as weak stiffness structure, difficult to reach the structure, microporous, oblique hole, ladder deep hole, etc.), difficult to process the surface. Vibration processing of the core technology is the exciter, many of the current vibration processing equipment is the use of ultrasonic vibration processing, the subject to be designed to design a new type of rotary electromagnetic exciter for vibration processing to increase the vibration processing technology equipment selection diversity The
Excavator vibration can not be separated from the brake drive, and the traditional electric brake with a small amount of telescopic displacement, output power is small, slow response and other defects, and must be high voltage drive, complex design, can not meet the rapid development of high-tech , And the use of bi-directional reversible energy conversion characteristics of the magnetostrictive material (Giant Magnetostrictive Material. Referred to as GMM) developed by the giant magnetostrictive brake, not only to overcome the shortcomings of the above-mentioned electric actuator, accurate up to nano Level, fast response, the output force, only a few volts to several tens of volts low voltage drive, and the design is relatively simple, high efficiency of electro-mechanical conversion is other materials can not be compared.
Based on the above background, this paper intends to use a torsion effect (Wiedeman effect) of the supermagnetism material to design a rotating magnetizer based on a giant magnetostrictive actuator. The Giant magnetostrictive actuator is driven by a DC pulsed coil High-frequency rotary motion, the flexible amplification mechanism to enlarge the rotation of the rotation to form a high-frequency rotating vibration, through the output of the vibration head to produce a reasonable rotating mechanical vibration excitation output can be applied to the work object to produce high-frequency dynamic rotary vibration excitation. After the design is completed, the simulator is optimized by ANSYS15.0. The movable part of the exciter is mainly composed of the flexible amplifier and the rotary vibration head, and the modal analysis and harmonic response analysis are carried out. Its vibration characteristics, natural frequency and resonant frequency range.