生漆-含氟树脂互穿网络聚合物的制备及其性能研究毕业论文
2021-03-01 14:51:52
摘 要
生漆,又称天然漆、国漆、大漆,来源于天然漆树的韧皮质层,是最古老的天然乳胶漆,是我国古代光辉灿烂文化的重要组成部分。它所显示出的耐磨性、耐久性以及耐化学试剂腐蚀性,是很多高分子材料做无法比拟是的。但生漆也存在着黏度过大、不易被水稀释、难以附着金属表面等缺点,同时生漆固化成膜后柔韧性差且有脆性,耐碱性以及抗紫外线性也相对较差,并且生漆会使人过敏中毒,这就限制了生漆的使用范围。为了提高生漆的综合性能,更好发挥生漆的优异性能,研究人员做了大量的工作。
含氟丙烯酸树脂不仅保留传统丙烯酸树脂透明度较高、色度较浅、光泽度较强,其固化成膜后,具有硬度大,附着力强以及耐腐蚀等优良性能,还赋予了树脂涂层更好的防水防油性能,在船舶防腐防污涂层、海洋设施涂层等方面应用范围很广。
本文总的来说具有以下两个方面的工作:
(1)首先是通过溶液聚合的方法得到含氟丙烯酸树脂,反应的单体选甲基丙烯酸甲酯、甲基丙烯酸三氟乙酯、丙烯酸正丁酯,过氧化苯甲酰为引发剂,二甲苯为溶剂,然后在通过红外光谱(FT-IR)对所制得的含氟丙烯酸树脂进行表征,最后将产物涂膜,进行接触角测试以及常规机械性能检测,与市售的含氟丙烯酸树脂进行性能对比。本实验确定了软硬单体的比例、含氟单体的用量以及过氧化苯甲酰的用量,得到了最优的含氟丙烯酸树脂制备方案。
(2)选择合适的溶剂,将制备好的含氟丙烯酸树脂与生漆按照一定的比例进行共混,然后将生漆以及共混物进行涂膜,最后进行常规机械性能检测、接触角测试,差示扫描量热仪分析以及电镜扫描测试等。
结果表明,自制的含氟丙烯酸树脂的光泽度、硬度以及柔韧性比市售的含氟树脂性能稍微好一点,同时,IPN共混技术对于精制生漆的改性具有很好的效果,共混体系的漆膜在各方面的性能都优于精制生漆,但生漆与含氟丙烯酸树脂的最佳共混比例为1:2。
关键词:生漆,含氟丙烯酸树脂,互穿网络聚合物
Abstract
It is the most ancient natural latex paint, which is an important part of ancient Chinese splendid culture and culture. It is the most ancient natural latex paint. It shows the wear resistance, durability and resistance to chemical corrosion, is a lot of polymer materials can not match. But the lacquer is also too large viscosity, difficult to be diluted with water, it is difficult to attach the metal surface and other shortcomings, while the raw lacquer curing film after the poor flexibility and brittleness, alkali resistance and UV resistance is relatively poor, and raw paint will make people Allergic poisoning, which limits the use of raw lacquer. In order to improve the overall performance of raw lacquer, better play the excellent performance of lacquer, the researchers do a lot of work.
Fluorinated acrylic resin not only retains the traditional acrylic resin transparency is higher, the color is shallow, the gloss is strong, its solidifies the film, has the hardness, the strong adhesion and the corrosion resistance and so on the excellent performance, also gives the resin coating more Good waterproof and anti-oil performance, in the ship anti-corrosion anti-fouling coating, marine facilities, such as coating a wide range of applications.
This article generally has the following two aspects of the work:
(1) First, a fluorine-containing acrylic resin is obtained by solution polymerization, and the reaction is carried out by selecting methyl methacrylate, trifluoroethyl methacrylate, n-butyl acrylate, benzoyl peroxide as initiator, Toluene was used as the solvent, and then the obtained fluorine-containing acrylic resin was characterized by infrared spectroscopy (FT-IR). Finally, the product coating film was subjected to contact angle test and conventional mechanical property test, and the commercially available fluorine-containing acrylic resin Perform performance comparison. In this experiment, the ratio of hard and soft monomers, the amount of fluorine-containing monomer and the amount of benzoyl peroxide were determined. The optimal preparation scheme of fluorine-containing acrylic resin was obtained.
(2) select the appropriate solvent, the prepared fluorine-containing acrylic resin and lacquer in accordance with a certain proportion of blending, and then the lacquer and blends for coating, and finally the conventional mechanical properties testing, contact angle test, differential Scanning calorimeter analysis and electron microscopy scanning test.
The results show that the gloss, hardness and flexibility of the self-made fluorine-containing acrylic resin are slightly better than those of the commercially available fluorine-containing resin. At the same time, the IPN blending technology has a good effect on the modification of the refined lacquer. Of the film in all aspects of performance are better than refined lacquer, but the lacquer and fluorine-containing acrylic resin, the best blend ratio of 1: 2.
Key Words:Lacquer, fluorine-containing acrylic resin, interpenetrating network polymer
目录
摘要 I
Abstract II
第一章 绪论 1
1.1研究背景 1
1.2生漆综述 1
1.2.1生漆的主要成分 1
1.2.2生漆的成膜过程 2
1.2.3生漆的改性研究发展 2
1.3含氟丙烯酸树脂综述 4
1.3.1含氟丙烯酸树脂的研究现状 4
1.3.2含氟丙烯酸树脂的改性机理及优异性能 4
1.3.3含氟丙烯酸树脂的主要合成方法及优缺点 5
1.4互穿网络聚合物 6
1.4.1IPN的概念 6
1.4.2 IPN的形态结构 6
1.4.3 IPN的前景展望 6
1.5研究内容及意义 7
第二章 含氟丙烯酸树脂的制备及性能研究 8
2.1引言 8
2.2实验部分 8
2.2.1实验原料与实验仪器 8
2.2.2实验步骤 9
2.2.3含氟丙烯酸树脂的结构表征 10
2.2.4 含氟丙烯酸树脂漆膜的常规性能测试 10
2.3结果与讨论 11
2.3.1 含氟丙烯酸树脂的红外光谱(FT-IR)测试 11
2.3.2 含氟丙烯酸树脂的接触角测试 12
2.3.3含氟丙烯酸树脂常规机械性能测试 12
第三章 生漆—含氟丙烯酸树脂互穿网络共混物的制备及性能研究 14
3.1引言 14
3.2实验部分 14
3.2.1实验原料及实验仪器 14
3.2.2生漆-含氟丙烯酸树脂共混体系的制备及涂膜的制备 15
3.2.3生漆-含氟丙烯酸树脂共混体系的性能测试 15
3.3 结果与讨论 16
3.3.1 共混液的稳定性 16
3.3.2共混体系漆膜差示扫描量热分析 16
3.3.3 共混体系成膜的SEM分析 17
3.3.4 共混体系成膜的接触角分析 18
3.3.5 精制生漆成膜以及共混体系成膜基本性能测试结果 19
第四章 结论 21
参考文献 22
致谢 24
第一章 绪论
1.1研究背景
海洋中蕴藏着极其丰富的资源,由于陆上资源的需求愈发紧张,海洋开发战略已经成为了世界经济可持续发展的共识,也是世界军事竞争的重要领域。然而,在海洋中航行的船舶,由于海生物的附着,增加了船身重量以及船底的表面粗糙度,降低了船舶的航行速度以及机动性能、增加了燃料的消耗。根据相关报道,远洋航行的万吨级的船舶,其船底损耗6%,燃油消耗增加 15%,每年的经济损失超过上百万美元,。此外,附着海生物的代谢也会对海洋设施进行腐蚀,引起海洋设施材料强度的破坏,严重时会引起海洋设施的坍塌【1】。
随着工业的发展,单一组分的聚合物材料很难满足人们的需求,而制备新的多功能的聚合物材料也比较困难。根据需求,将不同性能材料复合在一起,发挥它们的协同作用,容易达到人们的需求,这是一种简单、可行的方法[2]。
传统的聚合物合金方法是单一的机械共混,随着合金技术的愈发成熟,现在聚合物合金的方法发展为:嵌段共混、接枝共混、互穿网络共混。在这之中,互穿网络聚合物是最引人注目、让越来越多科研者充满浓烈兴趣的,它的中心内涵就是指两种或两种以上的聚合物永久的紧密缠绕在一起,形成类似于“麻花”的网络结构,在这之中,聚合物之间相互贯穿,相互缠绕,使得聚合物间性能互补,共同发挥自己的优势。
1.2生漆综述
1.2.1生漆的主要成分
天然生漆作为一种天然树脂涂料进行使用已有7000年左右的历史[4],具有着优良的耐久性和长效的防腐防污性能。我国是生产生漆的大国,其产量约占全球的85%。生漆是通过环割漆树,从漆树的韧皮中分泌出来的一种物质,生漆漆液属于油包水性型乳液,是一种天然可再生资源。随着分离手段以及分析技术的不断发展,生漆的主要成分分解出来并检测鉴别。它的主要化学成分包括:漆酚、漆酶、树胶质、含氮物质以及水等[5]。
漆酚是生漆的主要成膜物质,在生漆中占60%-65%,是一种天然的酚类化学物质,它是由0-3个-C=C-的C15或C17烷烃链的邻苯二酚衍生物,其具有独特的化学结构;漆酶是一种含铜的氧化还原酶,在生漆中含量较少,一般不到1%。它在生漆固化成膜过程中起着重要的催化作用,是生漆的重要组成部分;树胶质利于维持生漆乳状液的稳定,对漆膜性能也具有增强作用;水分是维持漆酶活性的主要物质之一,也是漆酚离子化不可缺少的促进剂[6-8]
1.2.2生漆的成膜过程
生漆自然条件下干燥成膜是一个化的复杂的过程。随着人们对生漆成膜机理的深入研究,目前提出的生漆成膜机理为:生漆的主要成膜物质-“漆酚”,在漆酶的催化作用下发生氧化聚合,且根据漆酚的氧化聚合的程度不同,将生漆固化分为四个阶段[9-10]:(1)漆酚醌的形成;(2)漆酚二聚体的形成;(3)漆酚多聚体的形成;(4)漆膜硬化阶段。
生漆在无氧条件下的高温固化成膜是不吸氧的缩合和聚合过程,缩合反应发生在苯核之间,聚合反应发生于侧链。在无氧条件下发生四个反应[11]:(1)共轭双键加成;(2)双键加成;(3)双键位置转移,双键变成共轭键进一步反应;(4)酚环的羟基脱水缩合。
1.2.3生漆的改性研究发展
生漆漆膜虽然具有较好的耐腐蚀性,耐久性以及高光泽度等性能,它所显示出的耐磨性、耐久性以及耐化学试剂腐蚀性,是很多高分子材料做无法比拟是的。但生漆也存在着黏度过大、不易被水稀释、难以附着金属表面等缺点,同时生漆固化成膜后柔韧性差且有脆性,耐碱性以及抗紫外线性也相对较差,并且生漆会使人过敏中毒,这就限制了生漆的使用范围。在实际应用中也存在着不足,比如,天然生漆能使人皮肤过敏、生漆粘度大以及耐碱性能较差等诸多问题,严重影响生漆的使用范围[12]。为了弥补生漆成膜性能上的缺陷以及提高生漆的经济效益,人们对生漆进行了改性研究。
(1)天然聚合物对生漆的改性
在生漆中混入干性、半干性的天然聚合物来改性生漆,是一种最早的生漆改性方法,很早人们便在生漆加入混合桐油来改善生漆膜的光泽度和韧性,随后,人们将亚麻油、腰果壳油以及豆油等天然聚合物与生漆共混制备改性生漆[13]。近年来,人们将单宁、松香等天然聚合物与生漆共混改性,改性后的生漆具有良好的耐碱性和耐热性[14-15]。
(2)漆酚与元素化合物改性
漆酚与金属(Cu、Al、Fe、Ti等)化合物、非金属(Si、B等)化合物分别反应制备出相应的漆酚金属化合物和漆酚非金元素化合物。由于漆酚上的羟基与金属化合物或金属反应制备的漆酚金属化合物具有很好的耐热性、耐碱性等,很早以前人们便将漆酚铁作为一种颜填料在涂料中广泛应用。随着对漆酚研究加深,林金火等[16]根据漆酚特殊的化学结构,将其与金属化合物反应,制备出一系列的漆酚金属化合物或螯合物。在这些漆酚金属化合物中以漆酚钛螯合物的耐强碱性和耐高温性最佳,且漆酚钛螯合物作为重防腐涂料已在工业和生产中应用。
漆酚非金属氧化物一般由漆酚与非金属化合物通过酯交换反应制备。为了解决生漆的干燥速率慢、色调单一,耐候性差等问题,LU等[17]将漆酚和有机硅共混,随后在向混合树脂中加入(Au、Ag)胶体制备成干燥快、颜色多样的新型生漆涂料。在此基础上,宫腰哲雄等[[18]将5%有机硅化合物加入到生漆中,通过漆酚与有机硅化合物反应,使漆酚的抗氧化性能减弱,促进侧链上自氧化反应发生,可以使生漆的干燥速率提高。
(3)生漆水性化改性
生漆在施工过程中,由于粘度过大,大面积使施工较麻烦。传统降低生漆黏度的方法是加入一些有机溶剂,然而含有有机溶剂的生漆在固化时,会放出大量的VOC,对人的健康和环境具有很大的危害作用。随着相关法律法规的出台,发展环保型涂料已成必然趋势。而水性涂料作为一种环保涂料,是以水作溶剂,成本较低,并且在漆膜固话过程中VOC含量低,所以近年来水性涂料成为涂料工业发展的热点。目前制备生漆水性化的乳化剂分为传统乳化剂和反应型乳化剂,都是采用相反转技术使生漆由油包水型(W/O)转变为水包油型(O/W)。
(4)合成树脂对生漆的改性