登录

  • 登录
  • 忘记密码?点击找回

注册

  • 获取手机验证码 60
  • 注册

找回密码

  • 获取手机验证码60
  • 找回
毕业论文网 > 毕业论文 > 机械机电类 > 车辆工程 > 正文

尾气温差发电器冷却系统的研究毕业论文

 2021-03-21 00:46:38  

摘 要

随着能源短缺与环境污染问题的日益加重,节能减排技术正在受到全世界的关注。由于传统汽车使用的内燃机效率较低,因此如何提高整车的燃油经济性一直是人们所关心的问题。汽车尾气温差发电技术的发展为这一问题提供了一种可行的方案。尾气温差发电器中热电模块冷热端的温度差是影响整个装置热电转换效率的重要因素,而热电模块的冷端温度由温差发电器的冷却系统直接控制,因此冷却系统的优化是温差发电技术研究中重要的一环。

本文在总结分析国内外尾气温差发电器及其冷却系统研究的基础上,结合传热学与热交换器的基本理论,对温差发电器冷却系统的性能进行了分析,研究了冷却水箱结构及其连接方式等因素对冷却系统冷却效果的影响。

首先以平板式温差发电装置为基础,通过理论计算确定了冷却水箱的几何尺寸,用CATIA建立了三维模型并用ANSYS ICEM CFD对其进行了网格的划分。以串联和并联全部冷却水箱为代表,重点研究了不同连接方式对于冷却水箱散热效果以及整个冷却系统的影响。在Fluent仿真的过程中,根据水箱流量的不同建立了多种不同的工况,从冷却水箱出入口冷却液温度的变化、耦合面换热系数以及进出口压力差等方面对不同工况下的串、并联水箱进行了对比,分析这两者在不同工况下的优缺点。

为了进一步研究冷却系统的特性,在AMESim中建立了整个冷却系统的模型并将Fluent中的仿真结果直接输入模型中进行仿真计算。对连接管路和散热器的散热量进行了分析,比较了水箱不同连接方式对于这两者的影响,验证了整个系统的散热量是否满足散热要求,定义了散热效率以用来评价冷却系统在水箱连接方式不同时的性能差异。

最后对几种影响散热器散热效果的因素:散热器散热性能、风扇尺寸和风速等进行了对比分析,通过仿真计算确定了各个工况下冷却系统所需要的散热器的最小散热能力并绘制了map图,为散热器的匹配提供了理论依据。

全文利用Fluent和AMESim联合仿真,从对局部冷却水箱的仿真分析到对整个冷却系统的冷却性能的研究,为温差发电器冷却系统的性能分析与匹配计算提供了完整的思路与计算方法。

关键词:尾气温差发电器;冷却系统;匹配计算;AMESim

Abstract

With the energy shortage and environmental pollution problems are increasing, energy-saving emission reduction technology is being the world's attention. As the traditional car using the internal combustion engine efficiency is low, so how to improve the fuel economy of the vehicle has been a concern. The development of automobile tail gas thermoelectric power generation technology provides a feasible solution for this problem. The temperature difference between the hot and cold end of the thermoelectric module is the important factor that affects the thermoelectric conversion efficiency of the whole device. The cold junction temperature of the thermoelectric module is directly controlled by the cooling system of the thermoelectric generator. Therefore, the optimization of the cooling system is an important part of the study of the thermoelectric power generation technology.

Based on the research of exhaust gas temperature difference generator and its cooling system at home and abroad, this paper analyzes the performance of the cooling system of the thermoelectric generator with the basic theory of heat transfer and heat exchanger, and studies the structure of the cooling water tank and its connection and other factors on the cooling system cooling effect.

Based on the plate temperature generator, the geometrical dimensions of the cooling water tank are determined by theoretical calculation. The 3D model is established by CATIA and the grid is divided by ANSYS ICEM CFD. Series or in parallel, represented by all of the cooling water tank, focused on the effects of different connections for the cooling effect of the cooling water tank and the entire cooling system. In the process of Fluent simulation, according to the different flow of the tank to establish a variety of different conditions, from the cooling tank inlet and outlet coolant temperature changes, the coupling surface heat transfer coefficient and the import and export pressure difference on the different conditions of the string , parallel to the water tank were compared to analyze the advantages and disadvantages of the two in different conditions. In order to further study the characteristics of the cooling system, the model of the whole cooling system was established in AMESim and the simulation results in Fluent were directly input into the model. Heat radiation amount of the radiator and connecting lines were analyzed and compared for the different connections affect both the water tank to verify the heat dissipation of the whole system meets the thermal requirements. The thermal efficiency is defined to evaluate the performance differences of the cooling system when the tank is connected differently.

Finally, several factors that affect the heat dissipation effect of radiator: radiator performance, fan size and wind speed are compared and analyzed. The minimum heat dissipation capacity of the radiator required by the cooling system in each working condition is determined by simulation calculation and the map is drawn. Which provides the theoretical basis for the matching of the radiator.

In this paper, the simulation of the local cooling water tank to the cooling performance of the whole cooling system is carried out by using Fluent and AMESim simulations, which provides a complete idea and calculation method for the performance analysis and matching calculation of the cooling system.

Key words: TEG; cooling system; matching calculation; AMESim

目 录

摘 要 I

Abstract II

第1章 绪论 1

1.1研究的背景及意义 1

1.2国内外研究现状 2

1.2.1温差发电器国内外研究现状 2

1.2.2温差发电装置冷却系统国内外研究现状 7

1.3 主要研究内容 9

第2章 汽车尾气温差发电系统的原理与结构 11

2.1 温差发电装置的基本原理 11

2.2 温差发电装置的结构 12

2.3 冷却系统的基本原理 16

2.3.1传热基础理论 16

2.3.2对流换热强化 17

2.4 本章小结 18

第3章 冷却水箱的建模与仿真 19

3.1概述 19

3.2建模软件与基本理论 19

3.2.1计算流体力学基础 19

3.2.2流体控制方程 20

3.2.3单元网格及软件介绍 21

3.3冷却水箱模型的建立 22

3.3.1三维模型的建立 22

3.3.2有限元模型的建立 23

3.4冷却水箱的仿真及分析 24

3.4.1仿真条件的设定 24

3.4.2仿真结果与分析 26

3.5本章小结 30

第4章 冷却系统的建模与仿真 31

4.1概述 31

4.2冷却系统的结构与理论计算 31

4.3冷却系统模型的建立 33

4.3.1建模软件 33

4.3.2模型的建立 33

4.4冷却系统的仿真与分析 35

4.4.1仿真参数的设定 35

4.4.2仿真结果与分析 36

4.4.3水箱连接方式对于冷却系统的影响 38

4.5冷却系统的匹配 39

4.5.1影响冷却系统散热能力的因素 39

4.5.2散热器的匹配计算 41

4.6本章小结 43

第5章 总结与展望 44

5.1全文总结 44

5.2主要创新点 44

5.3不足与展望 45

致 谢 46

参考文献 47

第1章 绪论

1.1研究的背景及意义

随着我国经济的飞速发展,汽车的普及率越来越高,截止至2016年12月,我国民用汽车保有量已达到1.94亿量,2016年新注册的汽车达2752万辆,汽车保有量净增2212万辆,保有量与其增量都达到了历史最高值。在机动车中,汽车所占的比重越来越大汽,近五年来占比从50.39%提高到65.97%[1]。汽车保有量在不断增加,随之带来的能耗问题日益凸显。在世界各国都在积极控制能耗的背景下,如何实现节能减排已成为汽车行业的核心问题。

目前,各大汽车厂商都在努力改善汽车的燃油经济性,但是相对于保有量的飞速增加,汽车的能源利用率提升显得微不足道,在具有革命性的新技术出现之前,能源不足问题仍然难以解决。大部分汽车至今仍在使用内燃机提供动力,传统的内燃机效率很低,其能量消耗分布如图1所示,燃料燃烧所产生的能量中只有25%的能量被用于驱动汽车行驶,约有40%的能量随高温尾气排入到大气中 [2]。内燃机经过这么多年的发展,其效率仍然很低,但目前的汽车仍然离不开它,所以我们只能从其它方面来提升燃油的利用率,回收尾气中的废热是目前最有效、最直接的途径。

您需要先支付 80元 才能查看全部内容!立即支付

企业微信

Copyright © 2010-2022 毕业论文网 站点地图