Bi1.5(Zn,Nb)O7电介质材料结构与储能特性研究毕业论文
2021-04-23 23:17:39
摘 要
介质材料的耐电压性能是提高其储能密度的重要因素之一。随着现代科技的进步,现代的通信技术的提升,各种通讯工具的简便化、缩小化、迅捷化,因此对介质材料的耐电压性能等方方面面有着更高的要求,对介质材料的研究迫在眉睫。同时由于高功率脉冲电源系统小型化、高功率化的发展要求储能介质材料具有更高的储能密度。反铁电储能材料具有优异的储能性能,但是随着环境保护提出无铅化的要求,亟需寻找储能性能可与之媲美的无铅储能介质材料来替代它。在现有的介质材料中,发现了具有立方结构的材料(如钛酸锶)和具有非晶态结构的介质(如玻璃和高分子聚合物)展现出较好的耐电压性能。然而在现有的普通电介质材料,其储能密度基本上停留在2.0 J/cm3以内,长期以来并没有较大的实质性的改变。而具有非晶态结构的聚合物薄膜,其储能密度最高达到100 J/cm3以上,其报道值可以满足实际高压器件的需求。但是由于其仅仅限于薄膜结构,所以当我们将其制备成块体或者体积更大的器件,其相关的性能显著降低,导致其应用方面受到了限制,难以得到更高的提高。
Bi2O3-ZnO-Nb2O5(BZN)陶瓷是拥有着烧结温度低,介电常数高,低频介电损耗低,良好的光电,铁电和热释电性能等诸多优良的特性,可以与Ag,Cu等材料共烧的陶瓷,在微波电路,多层陶瓷电容器,低温共烧陶瓷技术等领域用有着广泛的前景。然而微波频率下介电损耗大,在低温下存在明显的低频介电弛豫现象。本文使用固相法合成BZN陶瓷,通过制备立方结构的介质材料提高样品的耐电压性能和储能性能,探讨其在不同Zn/Nb比的状态下结构与性能的变化规律,通过组成变化研究改性与耐压,系统讨论介质材料结构与性能的相互关联性,探讨不同Zn/Nb比下结构的变化规律,为发展新型储能材料提供技术支持。
关键词:介质材料,BZN,耐电压性能
Abstract
The dielectric strength of a dielectric material is one of the important factors for increasing its energy storage density. With the advancement of modern science and technology, modern communication technologies have been improved, and various communication tools have become simpler, smaller, and faster. As a result, higher requirements are placed on the withstand voltage performance of dielectric materials, and research on dielectric materials is imminent.At the same time, due to the development of miniaturization and high power of high-power pulsed power systems, energy storage dielectric materials require higher energy storage densities. Antiferroelectric energy storage materials have excellent energy storage performance, but with the requirement of lead-free environmental protection, there is an urgent need to find lead-free energy storage dielectric materials with comparable energy storage properties to replace it. Among the existing dielectric materials, materials having a cubic structure (such as barium titanate) and a medium having an amorphous structure (such as glass and a high molecular polymer) have been found to exhibit better withstand voltage properties. However, in the existing ordinary dielectric materials, the energy density of the dielectric material is basically kept within 2.0 J/cm3, and there has been no substantial substantive change over a long period of time. The polymer film with an amorphous structure has a maximum energy storage density of 100 J/cm3 or more, and its reported value can meet the demand of high voltage devices. However, since it is limited to a thin film structure, when it is prepared into a bulk or a larger device, its related performance is significantly reduced, resulting in limitations in its application and difficulty in obtaining higher improvements.
Bi2O3-ZnO-Nb2O5 (BZN) ceramics have many excellent characteristics such as low sintering temperature, high dielectric constant, low low-frequency dielectric loss, good photoelectricity, ferroelectric and pyroelectric properties, and can be used with Ag, Cu, etc. Co-fired ceramics have a wide range of applications in microwave circuits, multilayer ceramic capacitors, and low-temperature co-fired ceramics. However, at microwave frequencies, the dielectric loss is large, and there is a clear low-frequency dielectric relaxation phenomenon at low temperatures. In this paper, the solid phase method was used to synthesize BZN ceramics. The dielectric properties of the cubic structure were used to improve the voltage resistance and energy storage properties of the samples. The structure and properties of the samples were investigated under different Zn/Nb ratios. Strain and pressure resistance, systematically discusses the interrelation between the structure and properties of dielectric materials, discusses the changing rules of different Zn/Nb ratios, and provides technical support for the development of new types of energy storage materials.
Key Words:dielectric material, BZN, Breakdown strength
目 录
第1章 绪 论 1
1.1 储能介质陶瓷的性能表征 1
1.1.1 介电常数εr 1
1.1.2 介质损耗 1
1.1.3 击穿强度Eb 2
1.1.4 储能密度 3
1.2 Bi基储能陶瓷材料的研究现状 3
1.3 论文选题依据 3
第2章 Bi基储能陶瓷材料的制备与表征方法 5
2.1 Bi1.5(Zn,Nb)O7电介质陶瓷的制备工艺 5
2.2 电介质陶瓷材料的结构 7
2.2.1 体积密度测量 7
2.2.2 X射线衍射分析(XRD) 8
2.2.3 扫描电子显微镜(SEM) 8
2.3 介电性能表征 9
2.4 铁电性能表征 9
第3章 Bi1.5(Zn,Nb)O7陶瓷的结构及介电性能研究 10
3.1 BZN陶瓷样品的制备 10
3.2 BZN陶瓷样品的相结构与微观结构 11
3.3 BZN陶瓷样品的介电性能 14
3.4 BZN陶瓷的储能性能 15
3.5 BZN陶瓷的偏压性能 17
3.6本章小结 17
第4章 结 论 19
参考文献 20
致 谢 22
第1章 绪 论
1.1 储能介质陶瓷的性能表征
陶瓷电容器被广泛应用在电力系统中,通常应用在电力电子的储能,计量,分压产品中。它是当前电子设备中大量使用的主要电子元器件之一,由于它具有隔直流和分离各种频率的能力,所以无论是在国防,工农业、科学研究,还是在日常生活中,都有着非常广泛的应用。早在19世纪,人们便开始对其研究,在先后出现的众多电容器诸如低介电容器、云母电容器、电解电容器和陶瓷电容器中,陶瓷电容器的地位也越来越凸显。陶瓷电容器不仅有较高的介电常数、耐压高,还可以耐腐蚀、耐高低温,这满足了目前极速发展的半导体集成电路行业对电容器小型且具有高容量的要求。近年来,随着材料、电极和生产工艺的进一步突破,陶瓷电容器的应用也渗入到多个方面,高压陶瓷电容器的发展早已进入了一个全新的阶段。
微波介质陶瓷材料的性能指标主要是看它的四个参数:介电常数εr ,介质损耗,击穿强度Eb和储能密度。
1.1.1 介电常数εr
由于材料的相对介电常数εr不同,并且处于微观原子水平的材料的极化与宏观可测量的性质(包括极化和电容)相关联。介电常数εr是测量介质极化行为或存储电荷能力的重要参数。在外部电场的作用下,电介质的正负电荷中心的相对位移产生偶极子,其表现为宏观极化行为。这种极化导致材料在表面累积残留电荷,从而存储静电能量。电介质在外部电场作用下的极化行为基本上是材料内微观粒子极化的宏观表现,并且是各种极化机制组合的结果。当εr越大,意味着材料的极化能力越强,谐振器尺寸越小,并且电磁能量可以更多的集中在介质中,受周围环境的影响就越小。这不仅有利于谐振器装置的小型化,而且对其高质量化也有积极影响。通过查阅文献,我们可以看到,如果我们想要获得高εr值,我们可以选择由具有较大极化率的离子组成的介质;当然,我们也可以使用高离子化合价和小晶胞体积的材料,如含钛氧。在制备陶瓷时要使晶体生长,而致密的结构也能有效提高陶瓷的εr值。