树脂基耐温耐磨复合材料的研究毕业论文
2021-05-15 23:56:01
摘 要
环氧树脂(Epoxy,EP)是一种性能优越的有机合成树脂,具有出色的力学与化学等性能,是热固性树脂中用量最大的品种之一,现已被广泛应用于航空航天、机械等诸多行业。但纯EP固化后性脆、磨损率高、耐热性较低,因而限制了其进一步的应用。随着以环氧树脂为基体的复合材料在航空航天等领域的应用的加深,对其性能要求也更加苛刻,良好的耐高温性能就是其中之一;此外,材料及其部件在长时间的运作过程中会因其相互接触而摩擦并产生能量损耗,进而磨损并报废,减小摩擦,也是工业生产研究的重点。因此对EP改性来提高其耐热性能和降低其摩擦系数,从而使环氧树脂获得更为广泛的应用。
本文主要使用氧化石墨烯(GO)和纳米聚酰亚胺微球共同改性环氧树脂,研究了氧化石墨烯和纳米聚酰亚胺微球的制备方法、二者如何均匀分散于环氧树脂中以及它们不同的量下对环氧树脂基复合材料耐温和耐磨性能的影响。采用改进的Hummers法制备GO,通过优化的两步法制备了聚酰亚胺纳米微球,采用共混法制备GO、纳米聚酰亚胺微球及两者共同改性的环氧树脂复合材料,并对不同量下的氧化石墨烯和纳米聚酰亚胺微球的对树脂体系进行了测试测试和理论分析。
研究结果表明:纳米聚酰亚胺微球能够提高EP的耐热性能,少量微球的加入能够提高EP的拉伸性能,但逐渐增大其含量拉伸性能则会降低;少量的GO便能大幅度降低EP表面摩擦系数及磨损量,提高体系耐磨性能,GO含量0.02%时磨损量降到最低,但继续增加摩擦系数变化不大而磨损量会上升,GO的加入也会降低体系力学性能;保持GO含量0.02%制备不同含量纳米聚酰亚胺微球的复合材料,测试发现,纳米聚酰亚胺微球会增大体系的摩擦系数,但与单一EP体系比较,摩擦系数和磨损量均有较大下降,微球含量为0.2%时,磨损量降到了最低,改性后的性能有较大改善,且通过热TG发现,两纳米材料共同改性后的环氧树脂耐热性能也有较大的提升。
关键词:环氧树脂;GO;纳米聚酰亚胺微球;摩擦系数;耐热性能
Abstract
Epoxy resin (EP) is a superior performance of the organic synthetic resin,which has excellent mechanical and chemical properties, etc. It is one of the most used in thermosetting resins and has been widely used in aerospace, machinery and many other industries. However, after curing,the pure EP are brittle, has a high wear rate and low heat resistance, which limits its further application.With the deepening of epoxy resin as matrix composites in aerospace applications, its performance requirements are also more stringent, and good high temperature resistance is one of them;Additionally, materials and its components will produce friction energy loss in the long course of the operation due to their their mutual contact, and then wear and tear, so reducing friction is also the focus of research in industrial production. So use the EP modification to improve its heat resistance and reduce the friction coefficienso that the epoxy resin to obtain a wider range of applications.
In this paper, we mainly used the graphene oxide (GO) and nano polyimide microspheres to modify the epoxy resin. Studyed preparation of graphene oxide and nano polyimide microspheres, both how uniformly dispersed in the epoxy resin,The effect of different amounts of them on the resistance and wear resistance of epoxy resin matrix composites. Preparation of GO by improved Hummers method, Through the optimization of the two-step prepared polyimide nanometer microsphere, and used
blending method Prepare GO, nano polyimide microspheres and both modified epoxy resin composite materials, and the resin system was tested and the theoretical analysis was carried out on the different amounts of graphene oxide and nano polyimide microspheres.
The esearch results indicate: nano polyimide microspheres can improve the heat resistance of EP, the addition of a small amount of microspheres can improve the tensile properties of EP, but gradually increase its content, the tensile properties will be reduced; A small amount of GO can greatly reduce the friction coefficient and wear of EP surface,improve the wear resistance of the system,and the wear rate of content was reduced to the lowest when the content of GO was 0.02%, but continue to increase the friction coefficient change is not big and wear quantity will rise, GO will also reduce the mechanical properties of the system ; Preparation of composite materials with different content of nano polyimide microspheres and fixed 0.02% GO ,through the test found, nano polyimide microspheres can increase the friction coefficient of the system,but compared with the single EP system, the friction coefficient and wear rate decreased significantly.When the microsphere content is 0.2%, the amount of wear to a minimum, performance has improved greatly after modified.And through the thermogravimetric analysis, it was found that the heat resistance of epoxy resin modified by two nano materials has a great improvement.
Key words: EP; GO; Nano PI microspheres; Friction factor; Heat resistance
目录
中文摘要 I
Abstract II
第1章 绪论 1
1.1选题研究背景、目的及意义 1
1.2氧化石墨烯 2
1.2.1 石墨烯结构和性能 2
1.2.2氧化石墨烯结构和性能 2
1.2.3 氧化石墨烯的制备 3
1.2.3.1氧化石墨的制备方法 3
1.2.3.2 氧化石墨的剥离 3
1.3纳米聚酰亚胺微球 4
1.3.1 聚酰亚胺 4
1.3.2高分子微球 5
1.3.3 聚酰亚胺微球 5
1.3.4纳米聚酰亚胺微球的合成方法 5
1.4纳米复合材料 7
1.4.1纳米粒子的团聚与分散 7
1.4.2纳米粒子尺寸及分散状况的表征 8
1.4.3纳米复合材料的制备 8
1.5环氧树脂改性的研究现状 8
1.6本课题研究的主要内容 9
第2章 纳米PI微球及其改性EP复合材料的制备 10
2.1实验部分 10
2.1.1实验耗材及仪器 10
2.1.1.1实验耗材 10
2.1.1.2实验仪器 10
2.1.2纳米PI微球的制备 11
2.1.3纳米PI微球改性EP复合材料的制备 11
2.2分析与测试方法 12
2.2.1微球粒径测试 12
2.2.2静态力学性能分析(拉伸强度) 12
2.2.3 FESEM(场发射扫描电镜分析) 12
2.2.4 TG(热重分析) 12
2.3结果分析与讨论 12
2.3.1粒径测试分析 12
2.3.2静态力学性能(拉伸强度)测试与分析 13
2.3.3 FESEM分析断面形貌分析 14
2.3.4 TG(热重分析) 15
2.4本章小结 15
第3章GO及其改性环氧树脂复合材料的制备 16
3.1实验部分 16
3.1.1实验耗材仪器 16
3.1.1.1实验耗材 16
3.1.1.2 实验仪器 16
3.1.2 GO的制备 17
3.1.3 GO改性环氧树脂复合材料的制备 17
3.2 测试与分析方法 18
3.2.1静态力学性能(拉伸性能)分析 18
3.2.2 FESEM分析 18
3.2.3摩擦系数和磨损量的测定及分析 18
3.3结果分析与讨论 18
3.3.1 改性材料拉伸性能测定及分析 18
3.3.2 FESEM拉伸断面的形貌的分析 19
3.3.3摩擦系数的测试分析及磨损量的测定 20
3.3.3.1摩擦系数的测试分析 20
3.3.3.2磨损量的测定与分析 21
3.4本章小结 21
第4章 树脂基耐温耐磨复合材料的制备 23
4.1实验部分 23
4.1.1实验耗材及仪器 23
4.1.1.1实验耗材 23
4.1.1.2实验仪器 23
4.1.2 GO/纳米PI微球改性EP复合材料的制备 23
4.2测试及分析方法 24
4.2.1静态力学性能(拉伸性能)分析 24
4.2.2摩擦系数及磨损量的测定 24
4.2.3 TG 24
4.3结果分析与讨论 24
4.3.1力学性能(拉伸强度)测试 25
4.3.2摩擦系数及磨损量的测定与分析 25
4.3.2.1 摩擦系数的测定与分析 25
4.3.2.2 磨损量的测定与分析 26
4.3.3 TG(热重分析) 27
4.4本章小结 28
第5章 结论和展望 29
5.1结论 29
5.2 不足与建议 29