水性聚氨酯的合成、改性及性能研究毕业论文
2021-06-25 01:35:12
摘 要
本论文以异佛尔酮二异氰酸酯(IPDI)、聚丙二醇(PPG2000)、亲水扩链剂2,2-双(羟甲基)丙酸(DMPA)、小分子扩链剂1,4-丁二醇(BDO)、中和剂三乙胺(TEA)和扩链剂乙二胺(EDA)等为主要原料,在以二月桂酸二丁基锡(DBTDL)为催化剂的条件下制备了一系列水性聚氨酯乳液,研究了硬段含量、R值(-NCO/-OH)对水性聚氨酯乳液及胶膜性能的影响。然后再选取乳液和涂膜综合性能最好的配方,通过加入环氧树脂(E44)对水性聚氨酯进行改性,并研究了DMPA加入量、环氧树脂加入量、R值和硬段含量等因素对改性后水性聚氨酯乳液及胶膜的性能影响。最后选取综合性能最好的一组改性后水性聚氨酯作主体树脂,制备轨道踏面摩擦控制剂,并对涂膜进行性能测试。
实验研究表明:
当硬段含量为50%,R值等于1.6时,制备的水性聚氨酯乳液和涂膜综合性能最好,乳液贮存稳定性大于6个月,接触角为34°,粒径为44.64nm,干燥后涂膜的吸水率为8.67%,磨损率为1.93%,附着力等级为2级,拉伸强度为11.20Mpa,断裂伸长率为415%。
根据水性聚氨酯合成实验,选择最佳配比:硬段含量为50~60%,R值等于1.4~1.6的水性聚氨酯加入环氧树脂(E44)进行改性,结果表明,当DMPA加入量为6%,环氧树脂加入量为6%,硬段含量为50%,R值等于1.6时,制备的水性聚氨酯的综合性能最好。乳液的贮存稳定性大于6个月,接触角为40.25°,大于改性前;涂膜的吸水率为7.85%,比改性前小,耐水性增强;粒径为44.35nm;磨损率为1.74%,耐磨性比改性前好;涂膜的附着力等级为1级,;胶膜的拉伸强度和断裂伸长率分别为14.5Mpa和389%,与改性前相比,断裂伸长率减小,拉伸强度增大;通过红外光谱分析,发现环氧树脂改性过程中,环氧基团开环生成-OH参与水性聚氨酯的反应;通过DSC分析可知,改性前胶膜分解温度为312.62℃,改性后胶膜分解温度为333.29℃,说明改性后水性聚氨酯胶膜耐热性能增强。
选取最优的一组改性后水性聚氨酯作主体树脂:硬段含量50%,R值等于1.6,DMPA加入量为6%,环氧树脂加入量为6%配制摩擦控制剂。对制备的摩擦控制剂涂膜进行性能测试,涂膜附着力等级为1级,磨损率为3.14%,摩擦系数平均分布在0.25-0.35之间,符合摩擦控制剂的使用要求。
关键字:水性聚氨酯;合成;改性;环氧树脂;摩擦控制剂
Abstract
In this paper, a series of different waterborne polyurethane emulsions were prepared by using Isophorone diisocyanate(IPDI),Polypropylene glycol(PPG2000),2,2-bis(hydroxymethyl) -propionic acid (DMPA),small molecule chain extension agent 1,4-butanediol(BDO),three amine (TEA),ethylenediamine (EDA) and dibutyltin dilaurate (DBTDL)as the main raw materials.The effects of hard segment content,R(-NCO/-OH)’s influen of the performance of waterborne polyurethane emulsion film, and the optimum formula and experim-ental method were determined.Then we select the best formula and use epoxy resin (E44) to modify waterborne polyurethane was ed by, and analyzes the epoxy resin added, DMPA amount, hard segment content, R value and so on factors with the modified waterborne polyuret -hane emulsion and film performance impact.Experiments show that: when the hard segment content is 50%, the R value is equal to 1.6, the preparation of aqueous polyurethane emulsion storage stability and appearance good, emulsion contact angle of 34 degrees, emulsion storage time is greater than 6 months, the particle size is 44.64nm, dry after the water absorption of the coating film rate 8.67%, the wear rate was 1.93%, coating adhesion is in Grade 2,tensile strength 11.2Mpa, fracture elongation 415%.According to the experimental results of waterborne polyurethane synthesis, the optimum ratio was chosen: the hard segment content was 50-60%, the revalue was equal to 1.4~1.6, and the waterborne polyurethane was modified by epoxy resin (E44),The results show that when the amount of DMPA is 6%, the amount of epoxy resin is 6%, the hard segment content is 50%, the R value is equal to 1.6. Emulsion storage stability should be more than 6 months, contact angle is 40.25 degree greater than modified before and after drying film bibulous rate of 7.85%,smaller than before modification, epoxy modified waterborne polyurethane adhesive film water resist -ance is better than before modification.The particle diameter is 44.35nm;wear rate was 1.74%, indicating that the modified film wear resistance compared with that before modification is good; coating adhesion is in Grade 1; the tensile strength of the film 14.5Mpa and elongation at break of 38.9%, the tensile strength of the film than before the modified high but the breaking elonga -tion is small; by infrared spectrum analysis, found epoxy resin modified process in waterborne polyurethane reaction; by DSC analysis shows that, instead of film decomposition temperature 312.62 degrees Celsius, modified film decomposition temperature 333.29 deg.c and illustrate the modified waterborne polyurethane adhesive film thermal performance enhancement.Select the optimal set of modified waterborne polyurethane as the main resin, the preparation of friction control agent: hard segment content 50%, R value is equal to 1.6, the amount of DMPA is 6%, the amount of epoxy resin is 6%. The friction control agent coating performance test, the film adhesion level is 1, the wear rate is 3.14%, the friction coefficient is 0.286.
Key words: waterborne polyurethane; modification; epoxy resin; Friction control agent
目录
摘 要 I
Abstract II
第一章 绪 论 1
1.1轨道摩擦控制剂 1
1.2聚氨酯及水性聚氨酯概述 2
1.2.1聚氨酯 2
1.2.2水性聚氨酯 2
1.3合成聚氨酯主要原料和合成基本原理 2
1.3.1合成聚氨酯的主要原料 3
1.3.2聚氨酯合成机理 4
1.3.3配方设计 5
1.4水性聚氨酯的改性 5
1.4.1环氧树脂的选择 6
1.4.2环氧树脂改性水性聚氨酯反应机理 7
1.5水性聚氨酯的国内外研究现状 8
1.5.1国内水性聚氨酯研究现状 8
1.5.2国外水性聚氨酯研究现状 8
1.6研究意义及主要内容 8
第二章 水性聚氨酯乳液的制备 10
2.1实验部分 10
2.1.1实验原料 10
2.1.2实验设备 11
2.1.3实验步骤 11
2.2性能测试 12
2.2.1涂膜的吸水率 12
2.2.2涂膜的耐磨性 12
2.2.3涂膜附着力 13
2.2.4涂膜拉伸强度和断裂伸长率 13
2.2.5涂膜接触角 13
2.3结果分析讨论 14
2.3.1涂膜吸水率 14
2.3.2涂膜耐磨性 15
2.3.3涂膜附着力 17
2.3.4粒径分布 17
2.4本章小结 18
第三章 环氧树脂改性水性聚氨酯 19
3.1引言 19
3.2实验部分 20
3.2.1实验原料 20
3.2.2实验设备 21
3.2.3实验步骤 21
3.3实验结果分析讨论 22
3.3.1DMPA加入量对涂膜吸水率的影响 22
3.3.2DMPA加入量对乳液贮存稳定性的影响 23
3.3.3红外光谱分析 24
3.3.4涂膜的耐磨性能测试 25
3.3.5改性后涂膜的附着力测试 26
3.3.6涂膜的力学性能测试 27
3.3.7接触角的测定 28
3.3.8粒径分布 29
3.3.9 DSC 30
3.4本章小结 31
第四章 钢轨踏面摩擦控制剂 32
4.1引言 32
4.2实验部分 33
4.2.1摩擦控制剂配方 33
4.2.2实验设备 33
4.2.3合成工艺流程 34
4.3分析与测试 34
4.3.1踏面控制剂基本性能 34
4.3.2涂膜附着力 35
4.3.3涂膜耐磨性 35
4.3.4涂膜摩擦系数 36
4.4本章小结 37
第五章 结论 38
参考文献 39
致谢 42
绪论
1.1轨道摩擦控制剂
当前,我国的轨道交通建设处于又一轮高速发展的阶段:截止2015年末,全国铁路营业里程达到12.1万公里,其中高铁营业里程超过1.9万公里。到2020年,将有约50个城市拥有城市轨道交通,总里程将达到6000公里。在国家发改委2016年5月初发布的 《交通基础设施重大工程建设三年行动计划》 中,铁路与城轨占了全部项目总额4.7万亿中的3.6万亿[1]!