硅光器件的仿真分析与测试研究毕业论文
2021-10-25 21:28:43
摘 要
光通信行业飞速发展为我们的生活带来了翻天覆地的变化。相比于电信号,光信号稳定、吞吐量大,抗干扰性能好的优点使其成为了通信领域的更佳选择。硅光器件作为光通信理论研究的重要基础,在对硅光器件进行设计和优化的过程中,受限于技术和环境等因素,研究和测试结果并不理想。计算机仿真和模拟能有效消除外在因素干扰,在理想状态下对器件进行研究和分析,通过计算机软件对光系统器件进行仿真测试成为了深入研究的有利工具。
本文在对硅光子器件进行整体性理解的基础上,以硅光子学中的重要硅光器件——硅基PIN光电探测器为主要研究对象,查阅相关文献,了解该硅光器件的组成部分、结构功能、工作原理和特性参数,根据数学模型研究其量子效率、响应度、暗电流等技术指标。使用SILVACO TCAD半导体仿真软件建立器件的结构模型,对硅基PIN光电探测器的重要参数指标进行测试。所得结果对于硅基PIN光电探测器的使用、设计、优化以及对硅光器件的仿真测试研究都具有重要的指导意义。
根据仿真结果:对于某种参数特定的硅基PIN光电探测器件而言,存在一个最佳的入射光信号波长,当波长处于该最佳值附近,半导体硅受到光辐射,开始进行能量转换,此时硅基PIN光电探测器的响应度最高。波长过短,载流子能量较大,高能载流子寿命过短,载流子无法到达电极变成光生电流。波长过长,光子能量较小,不满足本征吸收条件,不容易激发出载流子。无光条件下,因为载流子扩散和器件内部结构缺陷,硅基PIN光电探测器内部存在暗电流。
关键词: 硅光子器件;硅基PIN光电探测器;SILVACO TCAD;仿真
Abstract
The rapid development of optical communication industry has brought great changes to our life. Compared with electrical signal, optical signal has the advantages of stability, large throughput and good anti-interference performance,which makes it a better choice in the field of communication[1]. As an important foundation of optical communication theory research, the research and test results of silicon optical devices are not ideal due to technology and environment factors in the process of design and optimization of silicon optical devices[2]. Computer simulation and simulation can effectively eliminate the interference of external factors[3]. In an ideal state, the research and analysis of devices are carried out. Through computer software, the simulation of optical system devices has become a favorable tool for in-depth research.
In this paper, based on the overall understanding of the silicon photon device, with the help of the combination of hardware system test and computer software simulation, the important silicon optical device in silicon photonics -- silicon-based photodetector as the main research object, consult the relevant literature, understand the components, structure, function, working principle and characteristic parameters of the silicon-based photodetector, according to the mathematical model The factors affecting the quantum efficiency, responsivity, dark current and other technical indexes are studied. Using SILVACO TCAD semiconductor simulation software, the structure model of the device is established, and the important parameters of the silicon-based PIN photodetector are tested [4]. The results are of great significance to the use, design and optimization of silicon-based photodetectors, as well as the simulation and test of optical devices[5].
According to the simulation results: for a certain parameter specific silicon-based photodetector, there is an optimal wavelength of incident light signal. When the wavelength is near the optimal value, the semiconductor silicon is radiated by light and starts to carry out energy conversion. At this time, the response and quantum efficiency are the highest. When the wavelength is lower than this value, the power of optical signal radiation is higher than that of photogenerated electron current in silicon-based photodetectors. The quantum conversion efficiency is not high, and the responsivity of silicon-based photodetectors is affected. When the wavelength is larger than the critical value, the optical signal frequency is not enough to stimulate the intrinsic absorption of semiconductor silicon, and the responsivity is obviously reduced;Under the condition of no light, because of carrier diffusion and internal structure defects, there is dark current in the PIN photodetector.
Key Words:silicon photon device; silicon-based photodetector; SILVACO TCAD; simulation
目 录
第1章 绪论 1
1.1 研究目的和意义 1
1.2 国内外研究现状 2
1.3 本次设计的主要内容 3
第2章 硅基光电子器件概述 4
2.1 硅基光探测器 4
2.1.1 硅基PN结型光电探测器 4
2.1.2 硅基MSM光电探测器 4
2.1.3 硅基PIN光电探测器 5
2.2 硅基光波导 6
2.3 硅基调制器 6
2.4 本章小节 7
第3章 硅基PIN光电探测器理论研究 8
3.1 硅基PIN光电探测器理论基础 8
3.2 硅的光吸收 9
3.3 硅基PIN光电探测器性能参数指标 11
3.3.1 暗电流 11
3.3.2 量子效率和响应度 12
3.3.3 响应速度 13
3.4 本章小节 14
第4章 硅基PIN光电探测器的仿真测试 15
4.1 方案和参数设计 15
4.2 仿真实现及测试结果 16
4.2.1 初始化网格和结构设计 16
4.2.2 响应度的测量 18
4.2.3 暗电流的测量 19
4.3 测试结果分析 19
4.4 本章小节 20
第5章 总结与展望 21
5.1 总结 21
5.2 展望 22
参考文献 23
致谢 24
第1章 绪论
步入信息化时代,计算机、通信行业得到了空前发展。信息技术和光通信成为生产生活的必需品,是当今信息化社会必不可少的内容之一。光电子技术是通信研究领域中的一个重要分支,研究重点在于将光子视为信息和能量的载体,研究光子的产生、跃迁及其转化等过程[6]。
1.1 研究目的和意义
光电子学和光电子器件的发展对我们的生产生活产生了多方面的深远影响。生活中处处都留下了光电子的足迹。然而其发展的历程并非一帆风顺,在光电子技术的探索过程中,同样不可避免地出现了成本偏高、效果不佳等困难。
科学家们通过对硅的研究逐渐解决了光电子学发展中的诸多问题,光电子也由此得到迅速发展。硅光子学,是建立在以硅作为主要原材料的基础上,延伸出的一门有关研究、设计硅光子器件的学科。在光通信领域中,相比于其他材料,硅作为原料的优势显而易见:硅在地壳中含量丰富易得,成本低廉;光在硅基光器件中的传播损耗很低,并且因为硅的折射率较大,有着很好的波导性能,有利于光的传播;硅与CMOS能兼容,这也是有利于器件集成研究的重要因素之一。