PID控制算法在直立抗扰任务下外骨骼控制中的应用毕业论文
2021-11-07 20:58:46
摘 要
外骨骼作为一种可穿戴的智能机械装置,广泛应用于军事,医疗,工业领域,为穿戴者提供平衡支撑,行走助力,身体保护等功能。辅助穿戴者完成直立抗扰任务时,外骨骼与穿戴者之间是一种紧密耦合的工作模式。该模式决定了在设计外骨骼人机协作控制策略时,应当考虑两者间动作的同步问题,即外骨骼助力与穿戴者下肢运动一致性问题。本文以穿戴式踝关节外骨骼为对象,研究PID控制算法在直立抗扰任务下外骨骼控制中的应用。
研究工作包括一下三个方面:
(1)挑选面向直立抗扰的踝关节外骨骼。基于直立抗扰下人体平衡机理,建立踝关节力矩模型;通过沙袋撞击实验得出直立抗扰下人体踝关节运动特性,获得外骨骼需满足的参数;选择基于串联弹性的作动器与鲍登绳驱动的踝关节外骨骼,以便解决传统刚性外骨骼质量大,体积大,抗冲击性差等问题。
(2)设计基于PID的踝关节外骨骼力矩跟随控制策略。采用三次样条曲线描述直立抗扰下外骨骼期望力矩;根据穿戴者双腿肌肉激活量建立力矩模型参数优化的目标函数;通过自适应粒子群改进算法,优化外骨骼期望力矩;设计基于PID的外骨骼力矩跟随控制器,并使用Matlab对整体控制系统进行仿真。
(3)设计外骨骼辅助直立抗扰实验。采用实时控制器搭建外骨骼硬件控制系统;基于Matlab提供的Simulink工具包编写外骨骼控制程序;设计2组对比实验,评估直立抗扰下基于PID的外骨骼控制策略对穿戴者运动性能的改善的作用。
实验结果表明:穿戴本文挑选的外骨骼与设计的控制方法后,有效降低了直立抗扰下穿戴者的双腿肌肉激活量,减少穿戴者踝关节作动力矩。
关键词:踝关节外骨骼;直立抗扰任务;PID算法;力矩跟随
ABSTRACT
As a wearable intelligent mechanical device, exoskeleton is widely used in military, medical, and industrial fields to provide wearers with functions such as balanced support, walking assistance, and body protection. When assisting the wearer to complete the upright anti-disturbance task, the exoskeleton and the wearer are a tightly coupled working mode. This model determines that when designing an exoskeleton human-machine collaborative control strategy, the synchronization of the movement between the two should be considered, that is, the consistency of the exoskeleton power and the wearer's lower limb movement. This article takes wearable ankle exoskeleton as the object to study the application of PID control algorithm in exoskeleton control under the upright anti-disturbance task.
The research work includes the following three aspects:
(1) Select the ankle exoskeleton facing upright anti-disturbance. Based on the balance mechanism of the human body under the vertical anti-disturbance, an ankle joint torque model is established; through the sandbag impact experiment, the motion characteristics of the human ankle joint under the vertical anti-disturbance are obtained to obtain the parameters that the exoskeleton needs to meet; the actuator and Bowden based on the series elasticity are selected Rope-driven ankle exoskeleton to solve the problems of traditional rigid exoskeleton with large mass, large volume, and poor impact resistance.
(2) Design the PID-based ankle exoskeleton torque following control strategy. A cubic spline curve is used to describe the expected torque of the exoskeleton under upright anti-disturbance; the objective function of the torque model parameter optimization is established according to the amount of muscle activation of the wearer's legs; the adaptive particle swarm optimization algorithm is used to optimize the expected torque of the exoskeleton; the design is based on PID The exoskeleton torque follows the controller and uses Matlab to simulate the overall control system.
(3) Design exoskeleton to assist upright anti-disturbance experiment. The real-time controller is used to build the exoskeleton hardware control system; the exoskeleton control program is written based on the Simulink toolkit provided by Matlab; the two sets of comparative experiments are designed to evaluate the improvement of the wearer's sports performance based on the PID-based exoskeleton control strategy under the vertical anti-interference effect.
The experimental results show that wearing the exoskeleton selected in this paper and the designed control method can effectively reduce the amount of muscle activation of the wearer's legs under the upright anti-disturbance and reduce the wearer's ankle joint dynamic torque.
Key Words: ankle exoskeleton; upright anti-disturbance task; PID algorithm; torque following
目录
第1章 绪论 1
1.1 课题背景和意义 1
1.2 人体直立平衡策略 1
1.3 下肢外骨骼控制策略及算法实现 2
1.4 本文的研究内容 3
1.5 本章小结 3
第2章 面向直立抗扰的踝关节外骨骼的介绍 4
2.1 直立抗扰下踝关节运动特性分析 4
2.2 外骨骼作动结构介绍 7
2.3 外骨骼驱动机构介绍 9
2.4 本章小结 10
第3章 面向直立抗扰的踝关节外骨骼控制策略 11
3.1 外骨骼力矩期望数学模型的建立 11
3.2 外骨骼期望力矩模型参数优化 13
3.3 基于PID的外骨骼力矩跟随系统设计 16
3.4 外骨骼力矩跟随控制系统仿真 18
3.4 本章小结 22
第4章 外骨骼辅助直立抗扰实验设计及分析 23
4.1 实验方案设计 23
4.2 实验平台设计 23
4.3 “不穿戴外骨骼”的实验结果 26
4.4 “穿戴外骨骼”实验结果 27
4.5 实验结果对比及讨论 30
4.6 本章小结 32
第5章 总结与展望 34
参考文献 35
致 谢 37
第1章 绪论
1.1 课题背景和意义
外骨骼是一种可以穿戴于人体外侧的机械装置。它融合机器人学、机械学、仿生学、人体运动学、传感技术等研究领域技术,具有降低穿戴者能耗,增强穿戴者身体机能的作用。目前,外骨骼广泛应用于工业、医疗、军事等领域,为穿戴者提供平衡支撑、身体保护、行走助力等辅助功能[1]。
在协助穿戴者完成指定任务时,外骨骼与穿戴者形成一种紧密耦合的交互工作模式。不同于自主式工作的人形机器人,在外骨骼控制策略的研究上不仅要考虑对机械装置个体的控制,还要考虑外骨骼动作与穿戴者运动一致性问题[2]。为解决这一难题,首先需要研究简单任务下的单关节外骨骼人机协作控制规律[3]。从功能上来说,外骨骼主要分为2种:一是助力型,辅助运动障碍者肢体康复训练和行走支撑保护外骨骼;二是增力型,增强正常人力量、负重、耐力外骨骼。从结构上划分,外骨骼大致可以分为上/下肢外骨骼和全身外骨骼。其中,行走用下肢外骨骼的应用最为广泛[3]——下肢外骨骼普遍由踝、膝、髋3个关节构成,承担站立、平衡、行走等功能,在协助穿戴者完成行走任务时,外骨骼踝关节为穿戴者提供行走支撑,辅助穿戴者抵抗外部环境扰动,保持身体平衡,降低穿戴者摔倒的风险,减少对其他辅助用具的依赖,如拐杖、助行架等[4]。
因此,本文以穿戴式踝关节外骨骼为例,重点研究直立抗扰任务下的外骨骼控制机制,从中发掘简单任务下外骨骼控制的一般规律。
1.2 人体直立平衡策略
直立平衡是确保人体直立站立和从事其它运动的基本能力,可以有效降低人们在日常生活中跌倒受伤的风险。研究人员试图通过人为施加扰动的方式,来探究人体自身直立抗扰平衡机制[5]。