登录

  • 登录
  • 忘记密码?点击找回

注册

  • 获取手机验证码 60
  • 注册

找回密码

  • 获取手机验证码60
  • 找回
毕业论文网 > 开题报告 > 理工学类 > 数学与应用数学 > 正文

弦振动方程的求解及应用开题报告

 2022-01-06 22:08:10  

全文总字数:1686字

1. 研究目的与意义及国内外研究现状

生活中存在普遍的振动现象,振动问题的研究具有极为广泛的实际和理论意义.用数学方法寻找振动和波动的规律,会导致偏微分方程中波动方程的问题,求解弦振动方程对实际生活中存在的振动模型有着重大意义.本文主要目的是介绍弦作自由或强迫振动的方程及其解法,根据这些理论知识,求解斜拉桥以及络纱问题中的弦振动模型.

国内外研究现状

十八世纪欧拉最早提出了弦振动的二阶方程,随后不久,法国数学家达朗贝尔也在《论动力学》中提出了特殊的偏微分方程,1746年达朗贝尔在《张紧的弦振动形成的曲线研究》一文中,证明无穷多种和正弦曲线不同的曲线是振动的模式.国外对弦振动方程的研究相当重视,我国对弦振动以及因它开创的偏微分这门学科的研究起步较晚,但发展迅速,相继涌现出一批在该领域卓有成效的数学家,并在某些方面已经达到国际先进水平.例如谷超豪、李大潜院士等.除了基础理论,我国研究这一方面的学者十分重视弦振动方程与实际的结合.但总体来说,我国研究弦振动方程的水平、深度以及广度与世界先进水平相比还有较大差距.

2. 研究的基本内容

介绍有界弦振动方程及求解方法,并根据它求解实际生活中的弦振动模型.具体内容包括:

(1)弦振动方程的导出;

(2)利用分离变量法求解弦的自由振动方程,运用特征函数法求解弦的强迫振动方程;

剩余内容已隐藏,您需要先支付后才能查看该篇文章全部内容!

3. 实施方案、进度安排及预期效果

实行方案:

本文以弦振动模型为主要介绍对象.介绍弦作微小振动以及强迫振动的方程,并阐述其求解方法,解决斜拉桥钢缆模型以及络纱模型.

实行进度:

剩余内容已隐藏,您需要先支付后才能查看该篇文章全部内容!

4. 参考文献

[1]田硕.弦振动偏微分方程的求解[j].科学咨询(科技管理),2015(08):68-69.

[2]周邦寅,王一平,李立.数学物理方程[m].第二版..北京:电子工业出版社,2005:108.

[3]李刚,周继东,王文初.数学物理方程[m].北京:科学出版社,2008:104-106.

剩余内容已隐藏,您需要先支付 10元 才能查看该篇文章全部内容!立即支付

企业微信

Copyright © 2010-2022 毕业论文网 站点地图