登录

  • 登录
  • 忘记密码?点击找回

注册

  • 获取手机验证码 60
  • 注册

找回密码

  • 获取手机验证码60
  • 找回
毕业论文网 > 开题报告 > 理工学类 > 信息与计算科学 > 正文

耦合非线性Schrouml;dinger方程的紧致差分格式开题报告

 2022-01-07 22:19:24  

全文总字数:8722字

1. 研究目的与意义及国内外研究现状

耦合非线性Schrdinger方程在物理学的众多领域都有非常广泛的应用,例如非线性光学、凝聚态物理、等离子体物理等。因此关于该方程的求解就是一个极有意义的课题,然而关于它的精确解往往很难得到,在这种情况下,数值求解就变得极为重要。该方程满足多个重要的守恒性质,如质量守恒和能量守恒。因此,在对该方程的数值求解中,既要使得所构造的格式具有较高精度,又能尽可能多的保持原问题的一些守恒性质。基于以上考虑,本文拟对耦合非线性Schrdinger方程提出一个新的紧致差分格式,并证明新格式在离散意义下保持原问题的质量守恒和能量守恒。

国内外研究现状

已有大量文献对非线性Schrdinger方程做了研究,大部分非线性Schrdinger方程的数值方法经简单修改都可以推广到对非线性耦合Schrdinger方程的数值求解,但对算法的误差估计和稳定性分析等理论分析会因为耦合项的存在而产生很多新的困难。除此之外,也有很多文献对耦合非线性Schrdinger方程有关孤立波的碰撞进行了详细研究。关于耦合非线性Schrdinger方程的数值研究,M .S .Ismail 等人先后提出了几个具有二阶精度的线性和非线性隐式有限差分格式、四阶高精度隐式有限差分格式和Galerkin有限元格式,并运用Von-Neumann方法对算法的稳定性进行了分析。徐岩和舒其望运用局部间断有限元方法对非线性耦合Schrdinger方程进行了数值求解,并做了大量数值实验。Manakov S. V. 运用逆散射变换法对耦合非线性Schrdinger方程进行了半解析研究,Takayuki Tsuchida和Yi jinag Chen等在此基础上进一步的研究了耦合非线性Schrdinger方程的逆散射法,Christov和Sonnier等人提出了一个两层守恒差分格式,并对孤立波的碰撞进行了数值模拟。然而,以上算法大多是非线性隐式的,实际计算中不可避免地需要迭代,而且都没有给出格式的严格的收敛性分析。为此,王廷春等对[21-22]中的格式建立了严格的误差估计,并提出和分析了一个高效的迭代算法,特别给出了计算中不需迭代的具有二阶精度的线性化守恒差分格式。同年,王廷春、张鲁明和陈芳启还对耦合非线性Schrdinger方程提出了一个非耦合的线性化差分格式,并运用能量方法建立了格式的最优误差估计。王丽娟在其硕士学位论文中对耦合非线性Schrdinger方程建立了一个非线性隐式差分格式和一个线性化三层十一点隐式差分格式,并分析了格式的守恒性、稳定性、收敛性。杨磊基于二阶时间分裂结合有限差分格式对耦合非线性Schrdinger方程建立了一个高效的数值算法,并对孤立波的弹性碰撞和非弹性碰撞进行了数值模拟。谢树森等人对具有耗散的耦合非线性Schrdinger方程够构造了一个有限差分格式,证明了格式在时间和空间两个方向上都具有二阶精度,并分析了格式的无条件稳定性。然而,关于耦合非线性Schrdinger方程的紧致差分格式尚没有文献进行研究。

2. 研究的基本内容

1、首先介绍一下耦合非线性Schrdinger方程的物理背景及其守恒律,并综述一下研究现状;

2、提出一个新的有限差分格式,证明新格式能在离散意义下保持原问题的两个守恒性质;3、运用Taylor展开,详细推导出新格式的局部截断误差;4、通过算例给出测试新格式的精度,验证格式的守恒律,并对孤立波的运行进行数值模拟;5、对本文的研究结果进行简单总结。

3. 实施方案、进度安排及预期效果

1.实行方案:

我们对耦合非线性schrdinger方程构造一种紧致差分格式,分析该格式的局部截断误差,证明该格式的离散守恒律,引入追赶法对差分方程进行数值求解,并对孤波碰撞等现象进行了数值模拟。

2.进度:

剩余内容已隐藏,您需要先支付后才能查看该篇文章全部内容!

4. 参考文献

  1. W.Bao,Q.Tang,andZ.Xu,Numericalmethodsandcomparisonforcomputingdarkandbrightsolitons in the nonlinear Schrdinger equation, J Comput Phys 235 (2013), 423–445.
  2. S. V. Manakov, On the theory of two-dimensional stationary self-focusing of electromagnetic waves, Sov Phys JETP 38 (1974), 248–253.
  3. C. R. Menyuk, Pulse propogation in an ellipticaly birefringent Kerr medium, IEEE J Quant Elec 25 (1989), 267482.
  4. W. J. Sonnier and C. I. Christov, Strong coupling of Schrdinger equations: conservative scheme approach, Math Comp Simul 69 (2005), 514–525.
  5. W. J. Sonnier and C. I. Christov, Repelling soliton collisions in coupled Schrdinger equations with negative cross modulation, Discrete Continuous Dyn Syst, Special Issue (2009), 708–718.
  6. W.J.Sonnier, Dynamics of repelling soliton collisions in coupled Schrdinger equations, WaveMotion, 48 (2011), 805–813.
  7. E. P. Gross, Hydrodynamics of a superuid condensate, J Math Phys 4 (1963), 195–207.
  8. E. P. Gross, Structure of a quantized vortex in boson systems, II Nuovo Cimento 20 (1961), 454–477.
  9. L. P. Pitaevskii, Vortex lines in an imperfect bose gas, Soviet Phys JETP 13 (1961), 451–454.
  10. M. Wadati, T. Izuka, and M. Hisakado, A coupled nonlinear Schrdinger equation and optical solitons, J Phys Soc Japan 7 (1992), 2241–2245.
  11. Y. Chen, and J. Atai, Polarization instabilities in birefringent bers: a comparison between continuous waves and solitons, Phys Rev E 52 (1995), 3102–3105.
  12. H.G. Winful, Self-induced polarization changes in birefringent optical bers, Appl Phys Lett 47 (1985), 213–215.
  13. Y. Chen, Stability criterion of coupled soliton states, Phys Rev E 57 (1998), 3542C3550.
  14. T.Wang, B.Guo, and L.Zhang, On the Sonnier-Christov’s difference scheme for the nonlinear coupled Schrdinger system, Aca Math Sci Ser A 30A (2010), 114–125.
  15. T.Wang, L.Zhang, and F.Chen, Numerical analys is of amulti-symplectic scheme for a strongly coupled Schrdinger system, Appl Math Comput 203 (2008), 413–431.
  16. J. Cai, Multisymplectic schemes for strongly coupled Schrdinger system, Appl Math Comput 216 (2010), 2417–2429.
  17. M.S. Ismail and S.Z. Alamri, Highly accurate nite difference method for coupled nonlinear Schrdinger equation, Int J Comp Math 81 (2004), 333–351.
  18. M. S. Ismail and T.R. Taha, Numerical simulation of coupled nonlinear Schrdinger equation, Math Comp Simul 56 (2001), 547–562.
  19. M. S. Ismail and T. R. Taha, A linearly implicit conservative scheme for the coupled nonlinear Schrdinger equation, Math Comp Simul 74 (2007), 302–311.
  20. M. S. Ismail, A fourth-order explicit schemes for the coupled nonlinear Schrdinger equation, Appl Math Comput 196 (2008), 273–284.
  21. J. Cai, Y. Wang, and H. Liang, Local energy-preserving and momentum-preserving algorithms for coupled nonlinear Schrdinger system, J Comput Phys 239 (2013), 30–50.
  22. W.BaoandY.Cai, Ground states of two-component Bose-Einstein condensates with an internal atomic Josephson junction, East Asian J Appl Math 1 (2011), 49–81.
  23. M.S. Ismail, Numerical solution of coupled nonlinear Schrdinger equation by Galerkin method, Math Comp Simul 78 (2008), 532–547.
  24. H. Wang, A time-splitting spectral method for coupled Gross-Pitaevskii equations with applications to rotating Bose-Einstein condensates, J Comput Appl Math 205 (2007), 88–104.
  25. Y. Zhang, W. Bao, and H. Li, Dynamics of rotating two-component Bose-Einstein condensates and its efcient computation, Phys D 234 (2007), 49–69.
  26. T. Wang, T. Nie, and L. Zhang, Analysis of a symplectic difference scheme for a coupled nonlinear Schrdinger system, J Comput Appl Math 231 (2009), 745–759.
  27. Z. Sun and D. Zhao, On the L∞ convergence of a difference scheme for coupled nonlinear Schrdinger equations, Comp Math Appl 59 (2010), 3286–3300.
  28. S. Zhou and X. Cheng, Numerical solution to coupled nonlinear Schrdinger equations on unbounded domains, Math Comp Simul 80 (2010), 2362–2373.
  29. T. Wang, Optimal point-wise error estimate of a compact difference scheme for the coupled Gross-Pitaevskii equations in one dimension, J Sci Comput 59 (2014), 158–186.
  30. Z. Fei, V. M. Prez-Garca, and L. Vzquez, Numerical simulation of nonlinear Schrdinger systems: a new conservative scheme, Appl Math Comput 71 (1995), 165–177.
  31. S. Li and L. Vu-Quoc, Finite difference calculus invariant structure of a class of algorithms for the nonlinear Klein-Gordon equation, SIAM J Numer Anal 32 (1995), 1839–1875.
  32. Y. Zhou, Application of discrete functional analysis to the nite difference methods, International Academic Publishers, Beijing, 1990.
  33. T. Wang, B. Guo, and Q. Xu, Fourth-order compact and energy conservative difference schemes for the nonlinear Schrdinger equation in two dimensions, J Comput Phys 243 (2013), 382–399.
  34. Y. Zhang, Z. Sun, and T. Wang, Convergence analysis of a linearized Crank-Nicolson scheme for the two-dimensional complex Ginzburg-Landau equation, Numer Methods Partial Differential Equations 29 (2013), 1487–1503.
  35. F. Zhang, The nite difference method for dissipative Klein-Gordon-Schrdinger equations in three dimensions, J Comput Math 28 (2010), 879–900.
  36. A. A. Samarskii and V. B. Andreev, Difference methods for elliptic equation, Nauka, Moscow, 1976.
  37. J. Yang, Multisoliton perturbation theory for the Manakov equations and its applications to nonlinear optics, Phys Rev E 59 (1999), 2393–2405.
  38. W. Bao, Ground states and dynamics of multicomponent Bose-Einstein condensates, Multiscale Model Simul 2 (2004), 210–236.
  39. W.Bao and Y.Cai, Optimal error estimates of nite difference methods for the Gross-Pitaevskii equation with angular momentum rotation, Math Comput 82 (2013), 99–128.
  40. W.Bao and Y.Cai, Mathematical theory and numerical methods for Bose-Einstein condensation, Kinet Relat Mod 6 (2013), 1–135.
  41. W. Bao and Y. Cai, Uniform error estimates of nite difference methods for the nonlinear Schrdinger equation with wave operator, SIAM J Numer Anal 50 (2012), 492–521.
  42. D. S. Hall, M. R. Matthews, J. R. Ensher, C. E. Wieman, and E. A. Cornell, Dynamics of component separation in a binary mixture of Bose-Einstein condensates, Phys Rev Lett 81 (1998), 1539–1542.
  43. D. S. Hall, M. R. Matthews, C. E. Wieman, and E. A. Cornell, Measurements of relative phase in two-component Bose-Einstein condensates, Phys Rev Lett 81 (1998), 1543–1546.
  44. K. Kasamatsu and M. Tsubota, Nonlinear dynamics for vortex formation in a rotating Bose-Einstein condensate, Phys Rev A 67 (2003), 033610.
  45. K. Kasamatsu, M. Tsubota, and M. Ueda, Vortex phase diagram in rotating two-component BoseEinstein condensates, Phys Rev Lett 91 (2003), 150406.
  46. L. P. Pitaevskii and S. Stringary, Bose-Einstein condensation, Clarendon Press, Oxford, 2003.
  47. J. Williams, R. Walser, J. Cooper, E. Cornell, and M. Holland, Nonlinear Josephson-type oscillations of a driven two-component Bose-Einstein condensate, Phys Rev A 59 (1999), R31–R34.

剩余内容已隐藏,您需要先支付 10元 才能查看该篇文章全部内容!立即支付

企业微信

Copyright © 2010-2022 毕业论文网 站点地图