基于车联网的车路协同控制策略毕业论文
2022-01-08 20:59:15
论文总字数:18263字
摘 要
随着社会经济的发展,车流量逐年增加,城市道路越来越拥挤,由人因导致的交通拥堵或事故给人们的日常生活带了诸多不便。此外由于5G技术、智能车 的发展,对道路数据的采集的实时性和全面性有了质的飞跃。采用车辆协同控制策略可以有效地提高道路车辆的通行效率,减少因不规范行车带来的交通事故,具有广阔的经济和社会效益。
本文第一章阐述了研究基于车联网的车路协同控制的目的和意义,综述了国内外车路协同技术的发展现状,并着重介绍了智能车跟随行驶、红绿灯动态配时的研究情况。
第二章与第三章是本文的重点,在第二章我们充分利用5G条件下对数据采集的实时性与准确性,给出基于连续元胞自动机的满足安全距离的跟随模型以及换道模型。第三章中我们考虑到城市交叉口的拥堵问题,进而详细给出红绿灯动态配时规则以及改进的车辆跟随模型,以构建交叉口的速度引导,实现智能控制——提前加速通过或平滑减速缓行到路口等红灯结束后通过十字路口。
在第四章,我们建立了道路网格,用对其进行仿真,得到了一定时间内的车流通过量,用曲线图形象表示出了车辆在道路及交叉口的行驶过程,并与动态配时情况做了对比。
最后我们对论文进行了总结与分析,并对未来的进一步研究做出了展望。
关键词:车联网;车路协同;连续元胞自动机;智能交通;车速控制;
Abstract
With the development of social economy, traffic volume increases year by year and urban roads become more and more congested. The traffic jams or accidents caused by people lead to a lot of inconvenience to people's daily lives. In addition, the development of 5G technology and intelligent vehicle machines, has made a giant leap in the real-time and comprehensive collection of surrounding information. The vehicle-infrastructure cooperation improves transportation efficiency and diminishes traffic accidents seriously caused by nonstandard driving, which has broad economic and social benefits.
The first chapter explains the purpose and meaning of the research on vehicle-road collaborative control based on the Internet of Vehicles, summarizes the related research at home and abroad, and focuses on the research situation of the rule of car’s following driving and dynamic temporal arrangement of traffic light.
Chapters 2 and 3 are the emphases of this article. In Chapter 2 we make full use of the real-time and accuracy of data acquisition under 5G conditions, and give a following model which satisfies the safe distance and lane change model based on continuous cellular automata. In Chapter 3, we consider the congestion at crossroads, and then give detailed time arrangement rules of traffic light and an improved vehicle following model to build the speed guidance near crossroads which the vehicle would smartly to decide whether accelerate ahead or slow down to wait for the next chance.
In the fourth chapter, we establish a road grid and simulate it with MATLAB. We not only obtain an excessive amount of traffic in a certain period of time, but also use graphs to show the driving process of vehicles on roads and intersections. Then we compare it with detailed time arrangement rules of traffic light.
Finally, we summarize the full paper to make a prospect for further research in the future.
Key Words: connected vehicle; vehicle-infrastructure cooperation; continuous cellular automata; intelligent transportation; speed control
目录
摘要 I
Abstract II
第一章 绪论 1
1.1 课题研究背景及意义 1
1.2 文献综述 1
1.3 本文研究内容 3
第二章 车联网自动驾驶系统 4
2.1 单车道跟随模型 4
2.1.1 连续元胞自动机模型构建 4
2.1.2 安全距离算法 5
2.1.3 车辆跟随规则 6
2.2 变道模型 7
第三章 交叉口交通信号与车辆速度协同优化 8
3.1 红绿灯配时 8
3.1.1 意义 8
3.1.2 动态配时优化算法 8
3.2 改进的跟随模型 10
3.2.1 模型的提出 10
3.2.2 连续元胞自动机模型的更新 10
3.2.3 引导区间内的车辆跟随模型 11
第四章 数值实验 13
4.1 道路数据的选取 13
4.2 仿真实验数据 13
4.2.1 实验一 13
4.2.2 实验二 15
4.2.3 实验三 16
4.3 数据对比与分析 18
第五章 总结与分析 19
5.1 总结 19
5.2 难点与不足 19
5.3 展望 19
参考文献 21
致谢 23
绪论
课题研究背景及意义
随着社会城市化的急速发展,当前城市道路网络设施不仅不再能满足市民对于道路畅通、出行安全、绿色环保的要求,也阻碍了社会经济的健康发展。城市交通系统的超负荷运转已成为世界大中城市发展过程中面临的首要难题,一系列的严峻形势推动了对城市交通系统的大升级大改革的进程。如何有效缓解交通拥堵、提高道路安全、解决市民出行困难等问题,成为众多国家面临的巨大挑战。
随着智能车路协同系统的出现与发展,使得对自动驾驶车辆的研究得到进一步的深入与拓展,5G大数据时代的到来,更加使得车与路之间的共享得以实现。在给定的区域,如何充分利用车联网传感器所取得的历史信息及实时信息,针对不同的任务场景,给出合理的协同控制策略,具有非常重要的应用价值。
请支付后下载全文,论文总字数:18263字