一种用于驱动高压放电的便携可充电式微秒脉冲电源的设计和特性研究毕业论文
2022-01-08 22:02:08
论文总字数:23021字
摘 要
等离子体是一种气态物质,含有大量电子、离子、激发粒子、自由基和活性中性分子。根据电子温度和重粒子温度的相对大小,我们通常把等离子体分成热平衡等离子体与非平衡离子体两种类型,在电子温度方面,非平衡离子体要比离子温度高,所以叫它低温等离子体,它的温度与室温相差无几,并且在其内部构成上拥有许多高活性高能粒子,它们的化学活性可以在低温条件下得到较好的保持,这大大增加了进行正常的化学反应的难度,所以我们可以把低温等离子体应用在环境污染的控制、材料改性以及医疗消毒、流量控制等众多领域,它可以借此发挥出独具一格优势。
如今,低温等离子体的应用在许多领域都获得了长足的发展。现在关于等离子体的研究热点已经转移到:寻找更加高效的方法,使处在大气压条件下的各种反应器能够控制产生含有更多活性粒子的低温等离子体。想要使高低温等离子体中含有的活性粒子的浓度得到提高,就应该实现反应器结构与功率参数的同步优化。另外,对活性离子的含量起着决定性作用的是驱动电源,所以前提要保证,配一个合适的驱动电源,既能增加等离子体的产生效率,又可以得到更好的应用效果。最近几年,相关人士渐渐偏好使用脉冲电源驱动反应器放电来生产大气压非平衡等离子体。脉冲电压拥有微秒甚至纳秒级别的极速上升沿,这无疑成为脉冲电源驱动电抗器的独特优势。因为在气体分解前,能够将脉冲电压迅速提升,使其电压值远超DC击穿的电压值,就得到了更强大的空间电场环境,电子便能够吸收更丰富的能量,使电离效率得到了大大提升。因为实际应用领域中,通常需要产生低温离子,所以本课题重点设计并制作了一种使用锂电池供电的高压可充电式微秒脉冲电源。电压能够达到10kV;脉冲频率0~1kHz;脉冲波形易调制;在不同的温度下,该电源都能长时间稳定运行。
本课题研究的电源以锂电池为输入,在完成调压、整流以及滤波模块之后,接着进行与IGBT和脉冲变压器的原边串联操作。另外,我们使用开关电源对控制电路部分进行供电;电路中脉宽调制信号发生器的作用是调控IGBT的开关频率以及开关比,以控制特定频率的能量从滤波电容输入到脉冲变压器的初级侧。然后,经过脉冲变压器作用,得到足以驱动电抗器的高压脉冲信号,同时,利用驱动平板介质可以阻挡放电电抗器以及喷射电抗器的性质来探究电源驱动能力的大小。实验中不断改变触发脉冲的占空比以及频率等参数,可以直观的观察不同功率参数下的电抗器在驱动效果的区别,以此得到较好的功率工作参数。最终对电源的输出电路部分采取了完善处理,使脉冲变压器存在噪声的问题得到了很好的解决,也进一步提高了电源的工作性能。
关键词:等离子体 微秒脉冲电源 便携 介质阻挡放电 放电特性
Design and characteristics of a portable rechargeable microsecond pulse power supply for driving high voltage discharge
Abstract
Plasma is a kind of gaseous matter, and contains many electrons, ions, particles, free radicals and neutral molecules. Depending on the relative size of the electron temperature and the heavy particle temperature, the plasma can be divided into a thermal equilibrium plasma and a non equilibrium plasma. The electron temperature of the nonequilibrium plasma is higher than the ion temperature and is known as the low temperature plasma. The temperature is close to room temperature and contains a large number of high active particles. Maintain high chemical activity under low temperature and keep it in normal. Low temperature plasmas are widely used in the field of environmental pollution control, disinfection, material modification, and flow control, because chemical reactions are very difficult to produce. Low temperature plasma has made great progress in various fields. At present, there is a research hotspot that produces low-temperature plasmas containing more active particles at atmospheric pressure through various reactors. It is necessary to optimize the reactor structure and the output parameters at the same time to increase the content of the active particles and the active particles of the low temperature plasma. Because the driving power source has a critical effect on the content of the active particles, it is very important to select the appropriate driving power to improve the efficiency of plasma generation and the effect of the application. In recent years, atmospheric pressure non-equilibrium plasma generated by nuclear discharge by pulsed power supply has become the mainstream. The advantage of a reactor driven by a pulsed power supply is that the pulse voltage has a fast rising edge of microseconds or nanoseconds. The pulse voltage rapidly rises before the gas breaks down. This is much higher than the voltage at which DC breakdown occurs, generates a stronger spatial electric field, more energy is absorbed into the electrons, and the ionization efficiency further improves. A high voltage rechargeable micro second pulse power supply with lithium battery is designed and manufactured considering the demand of low temperature ions for practical use. The voltage may reach 10 kV. The pulse frequency is 0-1khz. The pulse waveform can be easily modulated. At various temperatures the power supply can be operated for a long time. The power of this project is based on a lithium battery connected in series with a pulse transformer after voltage regulation, rectification, and filtering modules. At the same time, the control circuit is powered from the switching power source to adjust and control the switching frequency and switching ratio of the IGBT using the PWM signal generator to adjust the energy of the filter capacitor to be input to the primary side. Side of pulse transformer at frequency . Finally, an impulse transformer is used to obtain a high voltage pulse that drives the reactor and examine the driving capability of the power source by driving the flat dielectric barrier discharge reactor and the jet reactor. By changing the duty cycle and frequency of the trigger pulse, the driving effect of the reactor with different output parameters is compared to obtain a better output operation parameter. Finally, in the output circuit of the power supply, the noise problem of the pulse transformer is improved, and the performance of the power supply is improved.
Keyword:plasma; Microsecond pulse power supply;Portable; Dielectric barrier discharge ; Discharge characteristics
目 录
摘要 I
Abstract III
第一章 绪论 1
1.1 等离子体概述 1
1.2 便携式可充电微秒脉冲电源 1
1.3 国内外研究现状 2
1.4 本文主要研究内容 5
第二章 电源电路设计 6
2.1 电源电路设计 6
2.1.1滤波电路 7
2.1.2 斩波电路 7
2.2 设计指标 10
2.3 电源工作过程 10
第三章 Matlab环境下的电源仿真 11
3.1 滤波电路仿真 11
3.2 微秒脉冲电源的仿真 12
第四章 实验与特性研究 14
4.1 电源制作 14
4.2 介质阻挡放电负载特性的研究 14
4.2.1 实验结果与仿真结果对比 16
4.2.2 实验内容 17
4.3 光谱特性分析 25
4.3.1 光谱简介 25
4.3.2 实验内容 25
4.4 电源改进 28
4.4.1 变压器绕组的影响因素和绝缘 29
4.4.2变压器磁芯的选择 29
4.5 电源性能总结 30
第五章 总结 31
参考文献 33
致 谢 36
第一章 绪论
1.1 等离子体概述
本文的主角-等离子体,明显区别于固体、液体以及气体,它属于第四种物质状态,我们通常所讲的物质是由分子组成的,然后分子由原子组成,原子再由显正电荷的原子核以及带负电荷的周围电子构成的,如果我们改变物质周围环境,比如进行加热,达到足够高的温度后,原子外层的电子如同获得了能量一般,就可以摆脱掉原子核施加的束缚,变身成为自由电子,我们就把电子离开原子核的过程叫做电离,此时,物质会呈现出一种均匀的絮状状态,其中含有带正电的原子核以及带负电的电子,被人们称作离子浆,这些离子浆整体呈现电中性,内部的正电荷和负电荷总数保持相等,也因此称之为等离子体[1]。
1.2 便携式可充电微秒脉冲电源
低温等离子体在日常消毒和伤口治疗领域有很大的发展空间。低温等离子体主要是由高压电源驱动放电电极放电产生的。驱动电源对放电特性有很大影响。与高频电源、工频电源和其他电源相比,利用脉冲电源实现放电可以产生大体积、高功率的等离子体,具有更广泛的应用价值。然而,现有的脉冲电源具有体积大、质量重等特点,不便于携带,大部分电源需要插上电源才能工作,不利于便携式等离子体设备的发展和推广。
请支付后下载全文,论文总字数:23021字