TiO2GO复合材料及其光催化还原CO2性能研究毕业论文
2022-01-17 21:49:44
论文总字数:22463字
摘 要
光能的利用,很大程度上能引起一场能源革命。其中二氧化碳的光还原,不但能减缓温室效应,同时,能产生烃类燃料,引起了人们的广泛研究。由于太阳能利用率低,传统TiO2等半导体光催化剂的大能隙能仍然是制约其应用前景的瓶颈。石墨相氮化碳(g-C3N4),作为下一代的光催化剂引起了科研工作者的广泛关注,因为它具有易合成,极具吸引力的电子能带结构,高的物理化学稳定性,以及原材料储量丰富等性质。由于载流子的高复合率,低电导率,对460nm以上的可见光缺乏吸收,因此需要对纯的g-C3N4进行了改性,以优化其光活性。中等氧化水平,禁带为2.4-4.3eV的GO光催化剂,具有稳定的光催化性能,以及较好的应用于人工光合作用前景,将Pt、Ni、NiO等催化剂负载在GO片上,提高了GO的光活性。而且,石墨经强氧化制得的氧化石墨烯片具有亲水性,由于高活性氧官能团的作用,它们的表面性能比较容易裁剪。Cu在CO2的烃催化反应中具有已知的有效性, 与GO相比,Cu的功函数大,并且Cu和GO之间可能形成肖特基结以增强光生电子和空穴的分离。
本文以铜团簇、氧化石墨烯、石墨相氮化碳合成铜团簇负载的g-C3N4/GO复合材料。通过测定恒定时间内以该复合材料作为催化剂对CO2光还原产物含量,来表明不同配体的复合材料的光催化性能。通过粉末X射线衍射(XRD)和扫描电子显微镜照片(SEM)对制得样品进行表征。
关键词:铜团簇;氧化石墨烯;石墨相氮化碳;光催化;二氧化碳光还原
Abstract
The application of solar energy can lead to an energy revolution to a large extent. Among them, the photoreduction of carbon dioxide not only slows down the greenhouse effect, but also produces hydrocarbon fuels, which has led to extensive research.Due to the low utilization rate of solar energy, the large energy gap of semiconductor photocatalysts such as TiO2 is still the bottleneck restricting its application prospects. Graphite carbon nitride (g-C3N4) has attracted wide attention as a next-generation photocatalyst because of its easy synthesis, attractive electronic band structure, high physicochemical stability, and the abundant raw materials . Due to the high recombination rate of carriers, low conductivity, and lack of absorption of visible light above 460 nm, pure g-C3N4 needs to be modified to optimize its photoactivity. Medium oxidation level, GO-catalyst with 2.4-4.3eV forbidden band hold stable photocatalytic performance, and good application in artificial photosynthesis ,loading Pt, Ni, NiO and other catalysts on the GO sheet can improve GO's Photoactive. Moreover, the graphene oxide sheets obtained by the strong oxidation of graphite are hydrophilic, and their surface properties are relatively easy to modify due to the action of highly reactive oxygen functional groups. Cu has a known effectiveness in the hydrocarbon catalytic reaction of CO2. The work function of Cu is large compared to GO, and a Schottky junction may be formed between Cu and GO to enhance the separation of photogenerated electrons and holes.
In this paper, copper clusters, graphene oxide, and graphite phase carbon nitride were used to synthesize copper-cluster-loaded g-C3N4/GO composites. The photocatalytic performance of the composites of different ligands was demonstrated by measuring the content of CO2 photoreduction products using the composite as a catalyst in a constant time. With the help of scanning electron micrograph (SEM),we can see the appearance of the Cu-Nanoclusters Decorated Graphene Oxide and Graphitic carbon nitride composite material made by us.
Keyword:Cu-Nanoclusters; Graphene Oxide; Graphitic carbon nitride; Photocatalytic; Reduction of CO2
目录
摘要 I
Abstract II
第一章 绪论 1
1.1 CO2光还原 1
1.2 Graphene Oxide材料 3
1.3石墨相氮化碳 5
1.4Cu团簇 7
第二章 Cu NCs负载的g-C3N4/GO复合材料合成及光催化性能的表征 10
2.1 Cu NCs负载的g-C3N4/GO复合材料合成 10
2.1.1实验所需化学药品及仪器 10
2.1.2 实验步骤 11
2.2 样品表征 12
2.3光催化性能测试 12
第三章 结果和讨论 14
3.1铜团簇负载的g-C3N4/GO复合材料SEM表征 14
3.2 XRD 结果及分析 15
3.3 紫外可见吸收光谱 17
3.4光催化二氧化碳还原性能测试 18
第四章 结论 20
参考文献: 21
致谢 25
第一章 绪论
1.1 CO2光还原
人类社会发展、科技进步,能源起到不可或缺的作用。二十世纪,化石燃料的大量使用导致了二氧化碳的过量排放,从而导致全球变暖。由此已经开发了几种技术,如洗涤和矿物碳化、地质注入和海洋注入等,用于二氧化碳的固存。然而,这些技术成本高,涉及二氧化碳泄漏的风险[1]。另外,二氧化碳可被视为一种廉价、安全和丰富的碳源,可转化为有价值的能源燃料。这一废物转化战略不仅可以缓解温室效应,减少CO2排放,而且有助于缓解能源危机。CO2是一种极稳定的线性对称分子,含有完全氧化的碳, 平均C=O双键能可达804.4 kJ/mol-1(在298 K),使二氧化碳的还原在热力学上很不利[2]。最近有关二氧化碳减排的研究包括热重整[3],热液转化[4],电化学还原[5], 和化学转化[6]. 然而,它们中的大多数消耗大量化石燃料,为C=O键的断裂提供足够的热能或电能。
另一方面,广泛存在的太阳能是清洁和可再生的。自从因努伊等在1979年通过Xe灯辐照[7],发现半导体中CO2饱和水悬浮液中CO2的光电催化还原的可能性后,用光催化将二氧化碳转化为燃料,作为解决日益严重的全球能源短缺和环境问题的方法已经得到迅速发展[8]。
请支付后下载全文,论文总字数:22463字