登录

  • 登录
  • 忘记密码?点击找回

注册

  • 获取手机验证码 60
  • 注册

找回密码

  • 获取手机验证码60
  • 找回
毕业论文网 > 毕业论文 > 机械机电类 > 过程装备与控制工程 > 正文

基于纳米压痕法的不锈钢低温气体渗碳层机械性能分析毕业论文

 2022-02-11 19:13:02  

论文总字数:16433字

摘 要

不锈钢具有耐腐蚀性强和韧性优良的优点,因而在工业中被广泛应用。但是,硬度和强度偏低,大大缩短了其在耐磨及疲劳工况下的使用寿命。因此,实验室开发工艺对其进行低温气体表面渗碳(Low Temperature Gas Carburization, LTGC),将碳原子渗到表面,形成过饱和固溶体,且不会产生富铬(Cr)碳化物。渗碳后性能发生变化,虽然表面硬度和强度性能被大幅提高,但渗碳后的不锈钢具有氢脆的特点易开裂,故而需对其机械性能进行分析,使其在工程应用时可安全使用。

使用传统方法将均匀试样进行单轴拉伸可获得其性能。不锈钢经LTGC技术处理后的使用性能(抗磨损、抗疲劳及抗应力腐蚀开裂性能等)与渗碳层的机械性能密切相关。因此,有必要对渗碳层本身的机械性能进行研究,而渗碳层本身极薄(约30 μm)且性能沿深度方向梯度变化,传统方法无法进行研究,故而采用纳米压痕仪器,该仪器尖端很小(1μm),研究难度非常大。到目前为止,相关研究报道极少。

本论文综合应用试验测试、数值计算和理论研究等方法,研究了不锈钢LTGC渗碳层的机械性能:

采用纳米压痕连续多循环加载试验,对渗碳层微观机械性能分布规律进行了研究。结果表明,经LTGC表面强化处理后的不锈钢表面屈服强度和应变硬化指数显著提高,分别从约0.3 GPa增加到约2.0 GPa及从约0.2增加到约0.56,但是,弹性模量变化不大,从基体约195 GPa到表面约216 GPa;LTGC表面强化工艺在显著提高不锈钢表面强度、硬度及压缩残余应力的同时,也大幅降低了表面的塑性,表面5 μm深度范围内开裂应变不到2 %;由于渗碳层表面15 μm深度范围在渗碳过程中发生了较大的塑性变形,在这一范围残余应力大小几乎等于材料屈服强度,当深度超过15 μm,残余应力开始低于屈服强度。

关键词:不锈钢 低温气体渗碳层 机械性能 纳米压痕

Analysis of mechanical properties of low temperature gas carburized layer of stainless steel based on nanoindentation method

Abstract

Stainless steel has the advantages of high corrosion resistance and excellent toughness, and is therefore widely used in the industry. However, the low hardness and strength greatly shorten the service life under wear and fatigue conditions. Therefore, the laboratory develops the process of carburizing the low-temperature gas surface(Low Temperature Gas Carburization, LTGC) to permeate the carbon atoms to the surface to form a supersaturated solid solution without producing chromium-rich (Cr) carbides. After the carburizing performance changes, although the surface hardness and strength properties have been greatly improved, but the stainless steel after the carburizing has the characteristics of hydrogen embrittlement and easy to crack, so it is necessary to analyze its mechanical properties, so that it can be safely used in engineering applications.

Uniaxial stretching of a homogeneous sample can achieve its properties using conventional methods. The service performance (anti-wear, anti-fatigue and stress corrosion cracking resistance, etc.) of stainless steel treated by LTGC technology is closely related to the mechanical properties of the carburized layer. Therefore, it is necessary to study the mechanical properties of the carburized layer itself, and the carburized layer itself is extremely thin (about 30 μm) and the gradient changes along the depth direction. The conventional method cannot be studied. Therefore, using the nano indentation apparatus, the tip of the instrument is very small(1μm). It is very difficult. So far, few studies have been reported.

In this paper, the mechanical properties of the stainless steel LTGC carburized layer were studied by experiments, numerical calculations and theoretical studies. The main research work and conclusions are as follows:

The author used nanoindentation continuous multi-cycle(CMC) loading test was used to studythe distributions of micromechanical properties of carburized layer. The results show that yield strength and strain hardening exponent on the surface of stainless steels are significantly improved by LTGC surface treatment, from ~0.3 GPa to ~2 GPa, and from ~0.2 to ~0.56, respectively. But, elastic modulus varies slightly, from ~195 GPa to ~216 GPa. The strength, hardness and compressive residual stress on the surface of stainless steels are significantly enhanced by LTGC treatment, but at the same time plasticity near surface are greatly decreased. The cracking strains in surface 5 μm-depth range are less than 2 %. Owing to the onset of plastic flow ranging from surface to 15 μm-depth position of carburized layer, the magnitudes of compressive residual stresses are almost the same as those of yield strengths in this range. when the depth exceeds 15 μm, the stresses begin to deviate yield strengths as a result of the decline in the amount of deformation.

Key words: Stainless steel; Low temperature gas carburized layer; Mechanical properties; Nanoindentation

目录

摘 要 I

Abstract II

第1章 绪论 1

1.1引言 1

1.2不锈钢低温气体渗碳技术研究进展 1

1.3不锈钢低温渗碳层的机械性能研究现状 3

1.3.1低温渗碳后对硬度的影响 3

1.3.2低温渗碳层应力-应变关系 3

1.3.3低温渗碳后对疲劳强度的影响 3

1.3.4低温渗碳后对残余应力的影响 4

1.4主要研究内容及方法 4

第2章 低温气体渗碳试验及试样性能表征 6

2.1引言 6

2.2内容与方法 6

2.2.1试验材料与试样制备 6

2.2.2低温气体渗碳试验过程 6

2.2.3渗碳层微观形貌观察 7

2.2.4渗碳层残余应力测量 8

2.2.5渗碳层截面纳米硬度和弹性模量测量 8

2.2.6渗碳强化层表面物相分析 9

2.2.7渗碳层碳浓度测量 10

2.3结果与讨论 10

2.3.1显微组织 10

2.3.2残余应力 11

2.3.3纳米硬度及弹性模量 11

2.3.4碳浓度分布 12

2.4本章小结 13

第3章 基于纳米压痕方法的不锈钢渗碳层应力-应变曲线 14

3.1引言 14

3.2纳米压痕基本原理及应力-应变转换模型 14

3.2.1基本原理 14

3.2.2应力-应变曲线转换模型 16

3.3纳米压痕试验 18

3.4结果与讨论 19

3.4.1压痕载荷-位移曲线 19

3.4.2压痕应力-应变曲线 20

3.5本章小结 22

第4章 总结与展望 23

4.1论文工作总结 23

4.2论文创新之处 23

4.3 经济性分析 23

4.4后期工作展望 24

参考文献 25

第1章 绪论

1.1引言

不锈钢在机械设计中因其优良的性能被广泛的使用。不锈钢一般不会出现因为超载而断裂的现象,因为钢材自身的塑性以及韧性优良[1]。不锈钢是在一定的条件下,而不发生腐蚀的钢,它是人们对具有良好耐腐蚀性的钢的美称[2]。然而不锈钢的强度和硬度都较低。在磨损、疲劳等工况下,不锈钢的使用寿命较短,易失效。不锈钢的耐腐蚀能力较强,但它们的耐磨性较弱,影响在工业上的使用。这个问题通常可以通过表面强化的方法来解决[3]。强化后的不锈钢许用应力分布均匀,材料的疲劳性能被提高,改善材料表面硬度,同时可以延长材料使用寿命[4]-[5]。关于低温气体渗碳后的不锈钢的抗摩擦磨损性能、抗疲劳性能已有大量研究,但是,很少有研究关注低温气体渗碳层的力学性能。渗碳层在不锈钢的表面,其力学性能直接影响不锈钢渗碳后的整体使用性能(抗磨损、抗疲劳、耐腐蚀、使用寿命等),故笔者认为有必要对渗碳后的渗碳层力学性能进行研究。

1.2不锈钢低温气体渗碳技术研究进展

目前,国外主要的低温气体渗碳工艺包括Kolsterising工艺、NV-pionite工艺和Swagelok工艺。以上技术大都十分成熟。美国的Swagelok工艺和荷兰Kolsterising工艺都已在市场应用。

Kolsterising技术:

请支付后下载全文,论文总字数:16433字

您需要先支付 80元 才能查看全部内容!立即支付

企业微信

Copyright © 2010-2022 毕业论文网 站点地图