登录

  • 登录
  • 忘记密码?点击找回

注册

  • 获取手机验证码 60
  • 注册

找回密码

  • 获取手机验证码60
  • 找回
毕业论文网 > 毕业论文 > 环境科学与工程类 > 水质科学与技术 > 正文

介孔炭修饰石墨电极制备及其对硝基苯的还原性能研究毕业论文

 2022-03-17 20:39:05  

论文总字数:25944字

摘 要

介孔炭有着均一的孔道结构、巨大的比表面积,在吸附、催化等领域有着广阔的应用前景。硝基苯是一种具有高毒性,很难被降解的有机物,将其还原为易降解的苯胺成为硝基苯废水处理领域的研究热点。本文尝试制备介孔炭修饰石墨电极,并将其作为阴极材料,采用绿色环保的电化学法还原处理硝基苯模拟废水,研究了修饰电极的电催化还原性能以及电解还原硝基苯的各种影响因素。论文主要结论如下:

(1)以对苯二酚为碳源,1,6-己二胺为催化剂,三嵌段共聚物F127为模板剂,利用软模板法制备介孔炭前躯体,并将其涂抹在石墨板上,在氮气保护下高温炭化,制得表面规整、不易脱落的介孔炭修饰石墨电极。经N2吸附-脱附等温线和孔径分布表征分析,可知:材料为介孔材料,符合介孔材料的孔径分布。CM-F127(0.625g)、CM-F127(1.25g)、CM-F127(2.5g)三组样品的集中孔径分别为7.8521nm、22.4870nm、10.1764nm。BET比表面积最大达到了61.5m2.g-1

(2)修饰电极的硝基苯的去除率和苯胺的生成量均高于石墨电极。反应3h后三组修饰电极对硝基苯的去除率达到99%以上,而石墨电极为98.28%,说明修饰电极具备良好的电催化还原性能;电流密度在一定范围内增加,能够促进反应的进行,加快硝基苯的还原去除。但当电流密度增加到20 mA/cm2时,又抑制了反应的进行。因此电流密度可优选15 mA/cm2;介孔炭修饰电极pH适用范围广,在3~9内均有良好的去除效果;酸性条件下有助于电化学还原实验的进行,pH升高可能会抑制硝基苯的去除,pH=5时效果最好。

关键词:介孔炭; 电化学还原; 孔结构; 硝基苯

Preparation of mesoporous carbon modified graphite electrode and its effect on the reduction of nitrobenzene

Abstract

Ordered mesoporous carbon materials has many unique physical and chemical properties, such as narrow pore size system and specific surface area, so it has made great application in adsorption and electrodes materials. Nitrobenzene is a high toxic organic pollutant that is hard to biodegrade. In this paper, we make the ordered mesoporous carbon modified graphite electrode as the cathode which can catalyze the reduction of nitrobenzene to aniline. The effects of various factors on the reduction effect are investigated. The main conclusions of the paper are as follows:

(1) In this paper, ordered mesoporous carbon precursor were synthesized via soft template method with phenolic resin as carbon source, 1,6-hexanediamine as catalyzer, triple-copolymer F127 (PEO-PPO-PEO) as template agent. Then the precursor was coated on graphite electrode, and the mesoporous carbon modified graphite electrode was prepared by carbonizing it at high temperature under nitrogen protection. The prepared electrode coating is uniform and is bonded with the substrate electrode. The resultant carbon materials were characterized by N2 adsorption/desorption and aperture analysis. The results show the resultant carbon materials have the structure and pore size distribution of mesoporous. The pore size of CM-F127(0.625g), CM-F127(1.25g) and CM-F127(2.5g) is concentrated upon 7.8521nm, 22.4870nm and 10.1764nm respectively. The maximum BET specific surface area is 61.5m2.g-1.

(2) The study found that the removal of nitrobenzene and production of aniline by mesoporous carbon modified graphite electrode were higher than that of graphite electrode. The increase of current density is beneficial to the reaction, but when it is too high (20 mA/cm2), side reaction increases. The current density of 15 mA/cm2 was appropriate. The material has a wide pH range of application between 3 and 9, and acid condition is beneficial to the reaction, when pH is 5, the treatment has the best effect.

Key-Words: Mesoporous carbon; Electrochemical reduction; Pore structure; Nitrobenzene

目录

摘要 Ⅰ

Abstract Ⅱ

第一章 绪论 1

1.1有序介孔炭材料概述 1

1.2有序介孔炭材料的合成 1

1.2.1硬模板法 2

1.2.2软模板法 3

1.2.3影响有序介孔炭材料合成效果的因素 4

1.3氮掺杂对有序介孔炭结构与性能的影响 5

1.3.1氮元素的掺杂方式 5

1.3.2氮掺杂有序介孔炭的应用 6

1.4电化学法处理硝基苯 6

1.5.1硝基苯类化合物的概述 6

1.5.2硝基苯含量的检测方法 7

1.5.3电化学法处理硝基苯的原理 8

1.6介孔炭材料修饰电极的制备 8

1.6.1刷涂法 9

1.6.2喷涂法 9

1.6.3浸渍法 9

1.6.4旋转涂膜法 9

1.5课题研究意义和主要研究内容 9

1.5.1课题研究意义 9

1.5.2课题主要研究内容 10

第二章 介孔炭电极的制备与表征 11

2.1实验部分 11

2.1.1实验所用试剂 11

2.1.2实验仪器 11

2.1.3材料表征手段 11

2.2介孔炭材料修饰电极的制备 12

2.2.1介孔炭的制备 12

2.2.2刷涂法用于制备电极 12

2.2.3炭化炉焙烧 13

2.2.4电极制备的效果 14

2.3介孔炭材料的表征 15

2.3.1N2吸附-脱附等温线和孔径分布 15

2.3.2介孔炭材料的孔结构参数分析 17

2.4本章小结 18

第三章 介孔炭修饰电极对硝基苯的电化学还原研究 19

3.1前言 19

3.2实验部分 19

3.2.1实验仪器及试剂 19

3.2.2实验装置及方法 20

3.2.3硝基苯的测定 21

3.3实验结果与讨论 21

3.3.1硝基苯和苯胺标准曲线的绘制 21

3.3.2介孔炭修饰石墨电极与石墨电极对硝基苯的去除 22

3.3.3电流密度对修饰电极去除硝基苯的影响 24

3.3.4初始pH对修饰电极去除硝基苯的影响 26

3.4本章小结 27

第四章 结论与建议 29

4.1结论 29

4.2建议 29

参考文献: 30

致谢 32

第一章 绪论

1.1有序介孔炭材料概述

多孔材料指的是具有一定数目及尺寸孔隙结构的材料,其相关的制备与应用一直深受研究者们的关注。多孔材料一般具有较大的比表面积,同时其材料骨架可与离子、分子、原子或纳米粒子等发生相互作用,从而表现出许多优异的性能,在吸附与分离、催化、离子交换、电容器、光电、传感器等领域发挥着巨大的作用。国际纯粹和应用化学联合会(International Union of Pure and Applied Chemisty, IUPAC)根据孔径尺寸将多孔材料分为三类[1]:大孔材料(孔径gt;50nm)、介孔材料(孔径2~50nm)、微孔材料(孔径lt;2nm)。比较常见的微孔材料有活性炭和炭分子筛[2],它们具有发达的孔结构和高的比表面积,被广泛应用于化学、环保、生物等领域,能够较好地吸附去除气体或液体介质中小分子物质,但因其孔径较小,不利于高分子聚合物、无机大分子和有机电解质的扩散和吸附;大孔材料的孔径变化范围大,可在纳米和微米范围内调节,同时孔的开放性大,可以大大提升介质中物质的扩散及传质速率,但其比表面积又相对较低。介孔材料具备两者的优点,因其纳米级的孔径和较高的比表面积,受到了人们的密切关注。

请支付后下载全文,论文总字数:25944字

您需要先支付 80元 才能查看全部内容!立即支付

企业微信

Copyright © 2010-2022 毕业论文网 站点地图