登录

  • 登录
  • 忘记密码?点击找回

注册

  • 获取手机验证码 60
  • 注册

找回密码

  • 获取手机验证码60
  • 找回
毕业论文网 > 毕业论文 > 理工学类 > 热能与动力工程 > 正文

浮头式对二甲苯冷却器的设计毕业论文

 2022-06-09 22:53:57  

论文总字数:25385字

摘 要

各种类型的换热器作为工艺过程重要的设备,广泛应用于石油化工、医药、冶金、制冷等部门。换热器应按照工艺参数及条件进行设计,满足特定工况和苛刻操作条件的要求。管壳式换热器具有结构坚固、操作弹性大、可靠程度高、使用范围广等优点,所以在工程中仍得到普遍使用。采用HTFS软件进行换热器工艺设计已很普遍,但为了使设计出来的换热器能更好地满足各种工况,仍然有许多方面需在设计时加以充分考虑。本文是对浮头式对二甲苯冷却器的设计,其主要研究内容和结论如下:设计一台浮头式对二甲苯冷却器,首先进行冷却器的工艺设计,确定选用的管壳式换热器的类型、换热器的管型、流体的走向和流向、确定相关的冷却介质,最后给出相关的理由。对二甲苯的性质对于工艺设计有一定的影响,而工艺设计的结果又可能直接影响到后期的热力计算和制图,所以如何正确的做出选择,需要查询一定量的国标和文献。 然后对于对二甲苯的物性参数的查询,通过《实用热物理性质手册》查询对应状态下的对二甲苯的物性参数。处理完基本数据,接着对冷却器进行结构的设计,初定换热系数,选择合适的管子尺寸,算的换热面积,冷却器管程和壳程的相关结构尺寸,包括这流管尺寸、管子长度、接管直径等。壳程的尺寸通过管子的排布而确定,管子的布置尽量要均匀合理,以免导致受热不均引起的应力。接着进行冷却器的热力计算。根据壳程和管程的传热系数,结合相关热阻和相关影响因素,算出系统总传热系数。然后根据水和对二甲苯的污垢热阻算出管程和壳程阻力。本论文所做的工作是对浮头式对二甲苯冷却器设计的准备工作和设计计算的一整套过程,分析并研究冷却器设计过程中相关注意点,并怎样通过改变相关变量来提高冷却器的性能,为日后冷却器的相关设计研究提供了一定的理论基础。

关键词:浮头式 对二甲苯 管壳式换热器 冷却器

The Design of floating head p-xylene cooler

Abstract

As process equipment, all types of heat exchangers are widely used in petrochemical, pharmaceutical, metallurgy, refrigeration and other departments. The heat exchanger should be designed in accordance with the process parameters and conditions to meet the requirements of the specific conditions and harsh operating conditions. Shell and tube heat exchanger has a solid structure, flexible operation, high degree of reliability, the use of a wide range, so is still widely used in engineering. HTFS software process design of heat exchangers has become commonplace, but in order to make the design of heat exchangers can better meet the needs of a variety of conditions, there are still many aspects need to be fully considered in the design. This paper is the design of the floating head p-xylene cooler, and its main contents and conclusions are as follows: Design a floating head p-xylene cooler ,determine the selection of shell and tube heat exchanger type of heat exchanger tube, the fluid toward and direction to determine the cooling medium. Finally, giving related reasons. Have a certain impact on the p-xylene nature of the process design, process design results may have a direct impact on the thermodynamic calculation and mapping of late, so how to make a choice, you need a certain amount of GB and literature, will be a difficulty. For inquiries on the physical parameters of the p-xylene, the corresponding physical parameters of p-xylene in the state ok Practical Thermal Physical Properties Of Manual Queries. Deal with the basic data, then the cooler design of the structure, an initial heat transfer coefficient, and select the appropriate pipe size, count the heat transfer area, cooler tube side and shell side of the structure size, including the flow tube size, pipe length, diameter, to take over. The size of the shell determined by the arrangement of the tubes, the layout of the pipe as far as possible should be uniform and reasonable so as not to cause the stress caused by the uneven heating.

Followed by a cooler thermal calculation. According to the shell and tube heat

transfer coefficient, and the related thermal resistance and related factors to calculate the overall heat transfer coefficient. Then calculated according to the fouling resistance of the tube side and shell side. The work done in this paper is on the preparatory work of a floating head the p-xylene cooler design and design calculations of a set of processes, attention to points in the process of analysis and the cooler design, and how by changing the relevant variables to improve the cooler performance provides a theoretical basis.

Key words: Floating Head P-xylene Shell And Tube Heat Cooler

目 录

摘 要 I

Abstract II

第一章 绪 论 1

1.1课题背景 1

1.2浮头式换热器 1

1.2.1换热器的分类: 1

1.2.2浮头式换热器的特点: 2

1.3 浮头式换热器的结构 2

1.4 换热器的设计方法 3

1.5换热器的强化传热方法 3

1.5.1 高效传热管与管内插物 3

1.5.2 高效传热管 4

1.5.3 管内插物 5

1.6 结语 6

第二章 换热器的工艺计算 7

2.1 设计条件 7

2.2 确定物性数据 7

2.3 符号说明 8

2.4 流体走向的确定 8

2.5依据流体流量算取热负荷,初选选换热器的规格 8

2.5.1 计算热负荷和冷却水的用量 8

2.5.2 计算两流体的平均温度差 9

2.5.3 初选换热器的规格 9

2.6换热管的排列和管心距 10

2.7 折流板 10

2.8接管 10

2.9 压强降的核算 11

2.9.1 管程压强降 11

2.9.2 壳程压强降 11

2.10 总传热系数的核算 12

2.10.1 管程对流传热系数 12

2.10.2 壳程对流传热系数 13

2.10.3总传热系数 13

第三章 换热器的结构设计 15

3.1筒体 15

3.1.1 材料的选取 15

3.1.2 结构尺寸 15

3.1.3 结构形式 15

3.2管箱材料 15

3.2.1 材料的选取 15

3.2.2结构尺寸 15

3.3 管箱法兰 16

3.3.1材料的选取 16

3.3.2 结构尺寸 16

3.3.3 结构型式 16

3.4接管材料 17

3.4.1 材料的选取 17

3.4.2 结构尺寸 17

3.4.3 结构型式 17

3.5 接管法兰 18

3.5.1 材料的选取 18

3.5.2 结构尺寸 18

3.6 垫片 18

3.7 管板 19

3.7.1材料的选取 19

3.7.2结构尺寸 19

3.7.3结构型式 19

3.8材料 20

3.8.1 材料的选取 20

3.8.2 结构尺寸 20

3.9 换热管 20

3.9.1 材料的选取 20

3.9.2 结构尺寸 20

3.9.3 排列型式 20

3.10 拉杆 21

3.10.1 材料的选取 21

3.10.2 结构尺寸 21

3.10.3 结构型式 21

3.11 折流板的选取及布置 22

3.11.1 材料的选取 22

3.12 封头 22

3.13浮头 23

3.14浮头箱 24

第四章 换热器的强度计算 25

4.1 筒体壁厚计算 25

4.2管箱短节、封头厚度计算 25

4.3 膨胀节的设计 26

4.4换热器受压元件强度计算及校核 28

请支付后下载全文,论文总字数:25385字

您需要先支付 80元 才能查看全部内容!立即支付

企业微信

Copyright © 2010-2022 毕业论文网 站点地图