新上市股票初始收益率波动性的实证检验 新上市股票初始收益率波动性的实证检验外文翻译资料
2022-12-02 19:33:36
An empirical assessment of initial return volatility in newly listed stocks
Paul B. McGuinness
Department of Finance, The Business Administration Faculty, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
ABSTRACT
A stockrsquo;s first month of listing or lsquo;seasoningrsquo; is often characterized by sharp volatility in initial returns. Such volatility is likely to be even more pronounced in initial public offering (IPO) markets where retail investors exert significant influence. I consider initial return volatility for IPOs pitched in Hong Kong, where the market organizer requires a sizeable fraction of shares on offer to be assigned to a retail subscription tranche. Within this context, I examine the pattern and determinants of IPO stocksrsquo; initial return volatility levels over their first 30 days of lsquo;seasoningrsquo;. I observe that IPO underpricing, market sentiment and float size figure as key explanatory factors. Results also reaffirm the importance of information asymmetry effects (Ritter, 1984; Beatty and Ritter, 1986; and Lowry et al., 2010). Larger IPO firms with tighter offer price spreads and more reputable underwriters exhibit noticeably greater price stability. I also assess Ljungqvist, Nanda and Singhrsquo;s (2006) proposition that underpricing in lsquo;hotrsquo; IPOs protects issuers and subscribers against a subsequent fall-off in issuer sentiment. Via analysis of retail tranche share allotments, I meaningfully extend findings (Jiang and Li, 2013) in this area.
KEYWORDS
IPOs; initial return volatility; price uncertainty
I. Introduction
This short article focuses on the volatility of initial public offering (IPO) returns during a newly-listed stockrsquo;s first 30 days of listing. Initial volatility can be extreme during this period. Houston, James, and Karceski (2006) observe that the first month of sea-soning is critical in establishing a stockrsquo;s fundamen-tal value. Lowry, Officer, and Schwert (2010) demonstrate that information asymmetry effects strongly underlie such return variability. In extend-ing this debate, I assess initial return volatility for IPOs pitched in Hong Kong. This setting is of inter-est given retail investorsrsquo; significant role in subscrip-tion and initial secondary market trading. This special influence derives from a dual-tranche offer form, earmarking separate retail and book-built pla-cing tranches. Subscribers to the retail tranche (RT) typically receive a large block allocation, ranging from 10 to 50% of IPO shares.1
Various studies indicate that offer prices only partially adjust for the ex-ante uncertainty (Ritter 1984; Beatty and Ritter 1986) surrounding issuer value (Hanley 1993; and Bradley and Jordan 2002).This means that a residual or lsquo;ex-postrsquo; element of uncertainty filters into initial secondary market returns (Ritter 1984; Chen and Wilhelm 2008; Ljungqvist, Nanda, and Singh 2006; and Falconieri, Murphy, and Weaver 2009). In respect of HK, Jiang and Li (2013) identify trading effects in support of the Ljungqvist, Nanda, and Singh (2006) argument of differential pre-and post-IPO sentiment effects.
In the initial seasoning period, market values could deviate significantly from fair value due to retail investorsrsquo; greater risk of adverse selection (Rock 1986). First and consistent with Ljungqvist, Nanda, and Singh (2006), retail investors denied sizeable allocations in lsquo;hotrsquo; IPOs could flood the initial secondary market with buy orders. Second, applicants with overpriced allocations might react by quickly unloading shares. Extreme volatility may simply arise because of retail investorsrsquo; proclivity to trade exclusively on sentiment. Lock-ups also act to limit corporate and institutional investorsrsquo; ability to sell nontrivial holdings (Chen and Wilhelm 2008). Institutions may thus help in softening initial return volatility. For HK, Jiang and Li (2013) show that when pre- to post-market sentiment adjusts fromlsquo;highrsquo; to lsquo;lowrsquo;, small and large tradersrsquo; buy–sell order flows move in counter-fashion.2
In the present study, market sentiment, float size, offer price spread, underwriter quality and issuer size all figure as important determinants of initial return volatility. I also identify lsquo;hotrsquo; IPOs via RT allotments and offer support for the Ljungqvist, Nanda, and Singh (2006) model of initial returns.
- Data, descriptive statistics and research design
- use the standard deviation of a stockrsquo;s daily close-to-close returns over its first 30 daysrsquo; trading as my dispersion metric. This form contrasts with variability measures formulated for fixed holding-periods. For example, and in relation to HK-IPOs, McGuinness (2014a, 150) reports a standard devia-tion in initial 30-day holding returns of 21.76%. Such return variation is not within the 30-day period but across issuers (see Jog and Wang (2009) and Lowry, Officer, and Schwert (2010) for similar approaches). I thus consider return variability for a given issuing firm. This approach entails computation of the standard deviation of
successive daily rates of return from first day list-ing close (t = 1) to the close of trading day p.3 Where p = 30, the volatility measure for a given IPO firm captures the standard deviation of its first 29 close-to-close returns. Table 1 reports a mean volatility value, across all issues (n = 269), of 3.56%. In respect of an issuerrsquo;s first five days of listing (t = 0 and p = 5; t = 0 is the open of the first listing day), T
我用一个股票在其前30天交易中的接近收盘价的标准差作为我的分散度量。这种形式与固定持有期的变异性度量形成对比。例如,例如,相对于香港IPO,McGuinness(2014A,150)在最初的30天持有回报率中报告了21.76%的标准偏差。这种收益变化不在30天内,而是跨发行者(见Jog and Wang (2009) , Lowry和Schwert(2010)类似的方法)。因此,我考虑给定发行公司的回归变异性。此方法需要从第一天上市的回报率接近连续每天的标准偏差计算(T = 1)的交易日,P = 30,对于一个给定的IPO公司的波动率度量了它的第一个29收盘收益率的标准差。表1报告平均波动值,跨越所有问题(n=269),为3.56%。关于发行人的上市前五天(t=0和p=5;t=0是第一上市日的开户);表1显示平均值为5.36%(n = 269)。波动性在交易的第二十五天和第三十天之间显著下降(平均为2.82%)(即,T=25,p=30)。
我在2005至2009年间在港交所主板研究新的上市事宜。方程1概述决定这样股票的日常波动性。
相关的经验证据表明,优惠折扣(PROBR)与初始二级市场回报率(波动性)的变化之间存在着积极的联系。Underpr抓住了最终报价和第一次市场开放之间的市场调整助跑。这不是用户的融资成本或发行人的子描述基金的利息帐户(见Fung和CHE 2009讨论)。
对于整体市场情绪,我定义了四个时期。posmkt1捕获前全球信贷紧缩的牛市(01 / 01 / 05–31/10 / 07)和negmkt2和negmkt3亚时期的熊市条件后雷曼崩溃(01 / 11 / 07 / 09 / 08–08;和09 / 09 / 31 / 03 / 09 08–)。虚拟市场标识在2009的最后八个月复苏的情绪。对于初步情绪,我确定上市公司的上市时间为五天左右。Lowry和Schwert(2010)更活跃的几个月表现出更大的收益率。6个IPO公司的公众持股量可能也会对收益率的波动性。更大的收益波动率可能在股票更“稀缺”(Loughran和麦当劳2013, 313)。因此,我断定波动率与公众持股量的倒数成反比。
像是Ritter(1984),Beatty和Ritter(1986)、Lowry、和Schwert(2010)的报告强调的对初始定价信息不对称的重要性。假设发行人和承销商之间的信息差距在发行规模和承销商质量上有所下降,但在报价价差上有所增加。首先,大企业可能会更加明显,具有较强的跟踪记录的收入,使他们的估值不确定性。给定可能的非线性,五个假人特征(sizeq1-5)。其次,一个更广泛的传播可能意味着更大的价格定价的不确定性。第三,正如在Beatty和RITE(1986)中所争论的,不确定性应该在承销商质量(QualuWR)中降低。
在市场购买活动的全球协调员(stblzn)可能情绪波动,约三分之一的IPO面临此类干预,零售结束后的第三十个日历日允许稳定结束。由于零售关闭通常发生在上市前一周,稳定结束在上市的第二十三日历(第十七交易日)。最后,控制状态支持问题(HR)。
表1–3的描述性统计和相关性为解释变量多重共线性出现在较低的水平。对于可变建设,我利用发行文件和IPO公告张贴到港交所的网站。股票和指数的价格数据,可利用数据流得出。
表1 新上市股票初始收益波动性的描述性统计
N |
Minimum |
Maximum |
Mean |
SD |
|
Volatility(0→5) |
269 |
0.53 |
37.22 |
5.361 |
4.023 |
Volatility(1→5) |
269 |
0.20 |
23.27 |
4.264 |
3.196 |
Volatility(5→10) |
269 |
0.44 |
13.29 |
3.339 |
2.321 |
Volatility(10→15) |
269 |
0.32 |
19.48 |
3.063 |
2.117 |
Volatility(15→20) |
269 |
0.41 |
9.27 |
2.831 |
1.696 |
Volatility(20→25) |
269 |
0.27 |
13.40 |
2.793 |
1.746 |
Volatility(25→30) |
269 |
0.28 |
12.81 |
2.818 |
1.821 |
Volatility(1→10) |
269 |
0.65 |
17.50 |
4.048 |
2.401 |
Volatility(10→20) |
269 |
0.59 |
13.35 |
3.137 |
1.643 |
Volatility(20→30) |
269 |
0.55 |
9.63 |
2.970 |
1.439 |
Volatility(1→30) |
269 |
0.96 |
9.98 |
3.563 |
1.500 |
表2 描述性统计
剩余内容已隐藏,支付完成后下载完整资料
资料编号:[21726],资料为PDF文档或Word文档,PDF文档可免费转换为Word
Trv30/ |
Trv1 |
0.04 |
020. |
420. |
0.00 |
0.05 |
269 |
||
Trv10/ |
Trv1 |
0.08 |
050. |
771. |
0.00 |
0.13 |
269 |
||
Stablzn |
0.36 |
000. |
001. |
0.00 |
0.48 |
269 |
|||
QualUwr |
1.43 |
002. |
003. |
0.00 |
1.18 |
269 |
|||
OPspread |
23.09 |
6323. |
6766. |
0.00 |
10.50 |
269 |
|||
Sizeq5 |
0.20 |
000. |
001. |
0.00 |
0.40 |
269 |
|||
Sizeq4 |
0.20 |
000. |
001. |
0.00 |
0.40 |
269 |