基于小波变换的图像去噪方法研究与实现开题报告
2020-04-13 11:11:54
1. 研究目的与意义(文献综述)
在信息传播过程中,图像是一个很重要的渠道,人类获取信息很多时候都是通过图像。器件和周围环境一般会对图像造成影响,使图像在生成和传输过程中含有噪声,从而降低图像画质,影响图像中可获得的有用信息。所以,在对图像处理时,进行图像去噪十分有必要。图像进行预处理的主要任务之一就是图像去噪,它的作用是为了提升图像的信噪比,进而突出图像所需的期望特征。然而噪声是随机产生的,具有不规则形,噪声的种类也有很多,不同类别的噪声也应采用不同的方法进行去噪。从对图像进行滤波时采用的滤波方法来分,可分为空间域滤波和变换域滤波;而从滤波类型来分,又可以分为线性滤波和非线性滤波。
图像去噪技术到目前为止已经比较成熟,在空间域中去噪是邻域平均法和中值滤波法等;在频域中去噪是将被噪声干扰的信号通过一个滤波器,滤除噪声频率成分。但是图像中一般存在着许多不容易消除的噪声,比如脉冲信号、白噪声、非平稳过程信号等等,因此需要一种既能完好保留图像边缘信息又能兼顾有效去除噪声的方法。传统的去噪方法比如用傅立叶变换直接进行低通滤波或带通滤波,这种方法比较简单、易于实现,但它无法滤去有用信号频带中的噪声,并且对于选择带宽和采用高分辨率相矛盾。这些年,基于小波变换的图像去噪方法收到了青睐,小波变换的主要优点是在时间域和频率域中同时具有良好的局部化特性和多分辨率。而且小波变换是一种线性变换,利用图像进行小波分解后,根据各个子带图像的不同特性选取不同的阈值,从而达到相对比较好的去噪目的。
2. 研究的基本内容与方案
一、基本内容
1.了解图像处理应用时的常用函数及其用法;
2.熟悉几种图像去噪算法的原理及特点;
3. 研究计划与安排
第1~3周 查阅文献;分析题目研究现状,学习基本理论;
第4周 阅读文献、撰写开题报告,英文文献翻译;
第5周 学习现有图像去噪技术,对小波分析的情况及发展趋势进行了解;
4. 参考文献(12篇以上)
[1] 成礼智等.小波的理论与应用.第二版.科学出版社,2005,1:269-280.
[2] 朱希安等.小波分析及其在数字图像处理中的应用.电子工业出版社,2012,6:88-100.
[3]song jing-pan.research on image denoising based on wavelet analysis[j].new china communications,2015(03):11.