登录

  • 登录
  • 忘记密码?点击找回

注册

  • 获取手机验证码 60
  • 注册

找回密码

  • 获取手机验证码60
  • 找回
毕业论文网 > 任务书 > 化学化工与生命科学类 > 化学 > 正文

罗丹明衍生物修饰稀土纳米晶上转换HOCl探针任务书

 2020-04-24 11:29:13  

1. 毕业设计(论文)的内容和要求

作为生命代谢过程中的重要产物,活性氧物种 (ros) 主要包含次氯酸 (hocl)、羟基自由基(oh#8226;)、过氧亚硝基阴离子(onoo-)、过氧化氢 (h2o2) 、单线态氧 (#8226;o2) 、超氧阴离子(o2#8226;-)、臭氧 (o3)、和亚硝酰(hno)等活性含氧自由基和分子,它们在生物体内的水平与机体的生理及病理状态相关。

这些ros性质通常比较活跃,能够直接与多种生物大分子作用,从而在机体的免疫反应过程中发挥着重要作用。

同时适当水平的ros对正常的生理过程亦是至关重要的,它们参与细胞生长调节、能量合成与代谢、重要物质的合成和细胞信号转导等重要生理过程。

剩余内容已隐藏,您需要先支付后才能查看该篇文章全部内容!

2. 参考文献

[1] Lambeth J D. Nox enzymes, ROS, and chronic disease: an example of antagonistic pleiotropy[J]. Free Radical Biology and Medicine, 2007, 43(3): 332-347. [2] Huang Y, Zhang P, Gao M, et al. Ratiometric detection and imaging of endogenous hypochlorite in live cells and in vivo achieved by using an aggregation induced emission (AIE)-based nanoprobe[J]. Chemical Communications, 2016, 52(45): 7288-7291. [3] Panasenko O M, Gorudko I V, Sokolov A V. Hypochlorous acid as a precursor of free radicals in living systems[J]. Biochemistry (Moscow), 2013, 78(13): 1466-1489. [4] Sgiyama S, Kugiyama K, Aikawa M, et al. Hypochlorous acid, a macrophage product, induces endothelial apoptosis and tissue factor expression: involvement of myeloperoxidase-mediated oxidant in plaque erosion and thrombogenesis[J]. Arteriosclerosis, thrombosis, and vascular biology, 2004, 24(7): 1309-1314. [5] S. Baldus, C. Heeschen, T. Meinertz, A.M. Zeiher, J.P. Eiserich, T. M#252;nzel, M.L. Simoons, C.W. Hamm, o.b.o.t.C. Investigators, Myeloperoxidase serum levels predict risk in patients with acute coronary syndromes, Circulation 108 (2003) 1440e1445. [6] Sugiyama S, Kugiyama K, Aikawa M, et al. Hypochlorous acid, a macrophage product, induces endothelial apoptosis and tissue factor expression: involvement of myeloperoxidase-mediated oxidant in plaque erosion and thrombogenesis[J]. Arteriosclerosis, thrombosis, and vascular biology, 2004, 24(7): 1309-1314. [7] Pattison D I, Hawkins C L, Davies M J. Hypochlorous acid-mediated oxidation of lipid components and antioxidants present in low-density lipoproteins: absolute rate constants, product analysis, and computational modeling[J]. Chemical research in toxicology, 2003, 16(4): 439-449. [8] Y. Koide, Y. Urano, K. Hanaoka, T. Terai, T. Nagano, Development of an Sirhodamine-based far-red to near-infrared fluorescence probe selective for hypochlorous acid and its applications for biological imaging, J. Am. Chem. Soc. 133 (2011) 5680#8211;5682 [9] Pattison D I, Davies M J. Evidence for rapid inter-and intramolecular chlorine transfer reactions of histamine and carnosine chloramines: implications for the prevention of hypochlorous-acid-mediated damage[J]. Biochemistry, 2006, 45(26): 8152-8162. [10] Kim H N, Lee M H, Kim H J, et al. A new trend in rhodamine-based chemosensors: application of spirolactam ring-opening to sensing ions[J]. Chemical Society Reviews, 2008, 37(8): 1465-1472. [11] Sun Z N, Liu F Q, Chen Y, et al. A highly specific BODIPY-based fluorescent probe for the detection of hypochlorous acid[J]. Organic letters, 2008, 10(11): 2171-2174. [12] Aulsebrook M L, Graham B, Grace M R, et al. Coumarin-based fluorescent sensors for zinc (II) and hypochlorite[J]. Supramolecular Chemistry, 2015, 27(11-12): 798-806. [13] Chen X, Wang X, Wang S, et al. A highly selective and sensitive fluorescence probe for the hypochlorite anion[J]. Chemistry#8211;A European Journal, 2008, 14(15): 4719-4724. [14] (a) Lou Z, Li P, Pan Q, et al. A reversible fluorescent probe for detecting hypochloric acid in living cells and animals: utilizing a novel strategy for effectively modulating the fluorescence of selenide and selenoxide[J]. Chemical Communications, 2013, 49(24): 2445-2447.; (b) Cheng G, Fan J, Sun W, et al. A near-infrared fluorescent probe for selective detection of HClO based on Se-sensitized aggregation of heptamethine cyanine dye[J]. Chemical Communications, 2014, 50(8): 1018-1020. [15] Kenmoku S, Urano Y, Kojima H, et al. Development of a highly specific rhodamine-based fluorescence probe for hypochlorous acid and its application to real-time imaging of phagocytosis[J]. Journal of the American Chemical Society, 2007, 129(23): 7313-7318. [16] Zhang Z, Zheng Y, Hang W, et al. Sensitive and selective off#8211;on rhodamine hydrazide fluorescent chemosensor for hypochlorous acid detection and bioimaging[J]. Talanta, 2011, 85(1): 779-786. [17] Yuan L, Lin W, Song J, et al. Development of an ICT-based ratiometric fluorescent hypochlorite probe suitable for living cell imaging[J]. Chemical Communications, 2011, 47(47): 12691-12693. [18] Li, R. B.; Ji, Z. X.; Dong, J. Y.; Chang, C. H.; Wang, X.; Sun, B.B.; Wang, M. Y.; Liao, Y. P.; Zink, J. I.; Nel, A. E.; Xia, T. Enhancingthe Imaging and Biosafety of Upconversion Nanoparticles throughPhosphonate Coating. ACS Nano 2015, 9, 3293#8722;3306 [19] Liu, Q.; Sun, Y.; Yang, T.; Feng, W.; Li, C.; Li, F. Sub-10 nm Hexagonal Lanthanide-Doped NaLuF4 Upconversion Nanocrystals for Sensitive Bioimaging in Vivo. J. Am. Chem. Soc. 2011, 133, 17122#8722;17125. [20] Bogdan, N.; Vetrone, F.; Ozin, G. A.; Capobianco, J. A. Synthesis of Ligand-Free Colloidally Stable Water Dispersible Brightly Luminescent Lanthanide-Doped Upconverting Nanoparticles. Nano Lett. 2011, 11, 835#8722;840. [21] Wang C, Cheng L, Liu Z. Drug delivery with upconversion nanoparticles for multi-functional targeted cancer cell imaging and therapy[J]. Biomaterials, 2011, 32(4): 1110-1120. [22] Yang, Y. M.; Shao, Q.; Deng, R. R.; Wang, C.; Teng, X.; Cheng, K.; Cheng, Z.; Huang, L.; Liu, Z.; Liu, X. G.; Xing, B. G. In vitro and in vivo uncaging and bioluminescence imaging by using photocaged upconversion nanoparticles. Angew. Chem., Int. Ed. 2012, 51, 3125#8722;3129. [23] Sedlmeier A, Gorris H H. Surface modification and characterization of photon-upconverting nanoparticles for bioanalytical applications[J]. Chemical Society Reviews, 2015, 44(6): 1526-1560. [24] Kumar R, Nyk M, Ohulchanskyy T Y, et al. Combined optical and MR bioimaging using rare earth ion doped NaYF4 nanocrystals[J]. Advanced Functional Materials, 2009, 19(6): 853-859. [25] Liu, Y.; Chen, M.; Cao, T. Y.; Sun, Y.; Li, C. Y.; Liu, Q.; Yang,T.; Yao, L. M.; Feng, W.; Li, F. Y. A Cyanine-Modified Nanosystemfor in Vivo Upconversion Luminescence Bioimaging of Methylmercury. J. Am. Chem. Soc. 2013, 135, 9869#8722;9876. [26] Ge, X. Q.; Sun, L. N.; Ma, B. B.; Jin, D.; Dong, L.; Shi, L.; Li, N.;Chen, H. G.; Huang, W. Simultaneous Realization of Hg2 Sensing, Magnetic Resonance Imaging and Upconversion Luminescence in Vitro and in Vivo Bioimaging Based on hollow Mesoporous Silica Coating UCNPs and Ruthenium complex. Nanoscale 2015, 7, 13877#8722;13887. [27] Lemon, C. M.; Karnas, E.; Han, X. X.; Bruns, O. T.; Kempa, T. J.; Fukumura, D.; Bawendi, M. G.; Jain, R. K.; Duda, D. G.; Nocera, D. G. Micelle-Encapsulated Quantum Dot-Porphyrin Assemblies as in Vivo Two-Photon Oxygen Sensors. J. Am. Chem. Soc. 2015, 137,9832#8722;9842. [28] Achatz, D. E.; Meier, R. J.; Fischer, L. H.; Wolfbeis, O. S.Luminescent Sensing of Oxygen Using a Quenchable Probe and Upconverting Nanoparticles. Angew. Chem., Int. Ed. 2011, 50, 260#8722;263. [29] Liu, J. L.; Cheng, J. T.; Zhang, Y. Upconversion Nanoparticle based LRET System for Sensitive Detection of MRSA DNA Sequence. Biosens. Bioelectron. 2013, 43, 252#8722;256. [30] Zhou Y, Pei W, Wang C, et al. Rhodamine‐Modified Upconversion Nanophosphors for Ratiometric Detection of Hypochlorous Acid in Aqueous Solution and Living Cells[J]. Small, 2014, 10(17): 3560-3567. [31] Hughes MN, Nicklin HG. The chemistry of pernitrites. Part I. Kinetics of decomposition of pernitrous acid. J Chem Soc A 1968; 2:450-2. [32] King SB, Nagasawa HT. Chemical approaches toward generation of nitroxyl. In: Packer L, editor. Methods in enzymology, vol. 301. San Diego: Academic Press; 1999. p. 211. Part C. [33] Li Z, Zhang Y, Jiang S. Multicolor core/shell‐structured upconversion fluorescent nanoparticles[J]. Advanced Materials, 2008, 20(24): 4765-4769.

3. 毕业设计(论文)进程安排

1.02前 与导师会面,布置论文题目及要求 2.02-2.18 查阅资料,完成开题报告和任务书 2.18-2.25 准备实验所需药品和器材 2.25-4.00 罗丹明衍生物修饰稀土纳米晶上转换HOCl探针的合成 4.01-4.05 摸索上转换纳米探针探针的分析条件 4.06-4.20 上转换纳米探针的紫外、荧光分析实验 4.21-5.9 活细胞体外上转换发光(UCL)成像研究 5.10-5.31 数据整理,书写论文,制作PPT 6.01-6.03 准备论文答辩

剩余内容已隐藏,您需要先支付 10元 才能查看该篇文章全部内容!立即支付

企业微信

Copyright © 2010-2022 毕业论文网 站点地图