股票数据预处理与时间序列分析模型开题报告
2020-04-25 19:41:02
1. 研究目的与意义(文献综述包含参考文献)
文 献 综 述 摘要 作为海量数据的处理方法,数据挖掘从诞生起就和股票市场有着密不可分的联系。
证券行业更是在信息化迅速发展的前提下成长起来的,很多业务都需要依赖对大量历史数据的分析,从中挖掘出有价值的信息。
本文主要分析了国内外对于证券行业股票的研究成果,探讨处理大量数据的数据挖掘方法,深度学习利用数据,建立恰当模型分析数据特征,进行股票行业的投资预测。
剩余内容已隐藏,您需要先支付后才能查看该篇文章全部内容!
2. 研究的基本内容、问题解决措施及方案
研究内容: 机器学习特别是深度学习在很多领域大展身手,比如图像分类、人脸识别、自然语言处理、自动驾驶上都有很好的应用。
特别是深度学习、深度强化学习等在金融领域也已经有所运用,比如说指数预测、择时交易、投资组合策略、价格预测、波率预测、算法交易和金融风控等。
股票数据以天为单位,且具有固定的数据格式,是一类具有时间序列的数据。
剩余内容已隐藏,您需要先支付 10元 才能查看该篇文章全部内容!立即支付