工艺参数对激光选区熔化TC4合金的熔池演化的影响任务书
2020-04-28 20:25:22
1. 毕业设计(论文)的内容和要求
近年来,激光选区熔化(slm)技术迅速发展,已经成为航空航天、汽车以及生物医疗等领域的高效制造方法,为工业产品的研发和制造提供了新的思路。
激光选区熔化是依据三维模型数据将材料层层堆积建造零件实体的技术,相对于传统的模具制造、切削加工等”减材制造”,可以自由的制造复杂零件以及利用难加工金属。
激光选区熔化过程中,激光能量在平面上服从高斯分布,金属粉末在激光的短暂辐照下吸收能量并快速熔化形成熔池,熔融金属在激光离开后快速凝固。
2. 参考文献
参考文献: [1] 杨泽, 李建永, 高兴华, 等. 浅析增材制造技术在制造业中的特点与应用[J]. 机床与液压, 2017(03):189-192. [2] 杨强, 鲁中良, 黄福享, 等. 激光增材制造技术的研究现状及发展趋势[J]. 航空制造技术, 2016(12):26-31. [3] Wei P, Wei Z, Chen Z, et al. Numerical simulation and parametric analysis of selective laser melting process of AlSi10Mg powder[J]. APPLIED PHYSICS A-MATERIALS SCIENCE PROCESSING, 2017,123(5408). [4] Dai D, Gu D, Zhang H, et al. Influence of scan strategy and molten pool configuration on microstructures and tensile properties of selective laser melting additive manufactured aluminum based parts[J]. Optics Laser Technology, 2018,99:91-100. [5] Chen H, Gu D, Xiong J, et al. Improving additive manufacturing processability of hard-to-process overhanging structure by selective laser melting[J]. Journal of Materials Processing Technology, 2017,250:99-108. [6] Dai D, Gu D. Effect of metal vaporization behavior on keyhole-mode surface morphology of selective laser melted composites using different protective atmospheres[J]. Applied Surface Science, 2015,355(Supplement C):310-319. [7] Yuan P, Gu D. Molten pool behaviour and its physical mechanism during selective laser melting of TiC/AlSi10Mg nanocomposites: simulation and experiments[J]. JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2015,48(0353033). [8] Panwisawas C, Qiu C, Anderson M J, et al. Mesoscale modelling of selective laser melting: Thermal fluid dynamics and microstructural evolution[J]. Computational Materials Science, 2017,126:479-490. [9] Chen Q, Guillemot G, Gandin C, et al. Three-dimensional finite element thermomechanical modeling of additive manufacturing by selective laser melting for ceramic materials[J]. Additive Manufacturing, 2017,16:124-137. [10] Andreotta R, Ladani L, Brindley W. Finite element simulation of laser additive melting and solidification of Inconel 718 with experimentally tested thermal properties[J]. Finite Elements in Analysis and Design, 2017,135:36-43. [11] Liu Y J, Liu Z, Jiang Y, et al. Gradient in microstructure and mechanical property of selective laser melted AlSi10Mg[J]. Journal of Alloys and Compounds, 2018,735:1414-1421. [12] 刘臻, 张冬云, 冯喆, 等. 数值模拟选区激光熔化加工Inconel 718合金时搭接率对成型质量的影响[J]. 应用激光, 2017(02):187-193. [13] Li C, Liu J F, Fang X Y, et al. Efficient predictive model of part distortion and residual stress in selective laser melting[J]. Additive Manufacturing, 2017,17:157-168. [14] Haider Ali H G K M. Effect of scanning strategies on residual stress and mechanical properties of Selective Laser Melted Ti6Al4V[J]. Materials Science Engineering A, 2017. [15] Wu J, Wang L, An X. Numerical analysis of residual stress evolution of AlSi10Mg manufactured by selective laser melting[J]. Optik - International Journal for Light and Electron Optics, 2017,137:65-78. [16] Tian X, Peng G, Yan M, et al. Process prediction of selective laser sintering based on heat transfer analysis for polyamide composite powders[J]. International Journal of Heat and Mass Transfer, 2018,120:379-386. [17] Zeng K, Pal D, Teng C, et al. Evaluations of effective thermal conductivity of support structures in selective laser melting[J]. Additive Manufacturing, 2015,6:67-73. [18] Kajima Y, Takaichi A, Nakamoto T, et al. Effect of adding support structures for overhanging part on fatigue strength in selective laser melting[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2018,78:1-9. [19] Hussein A, Hao L, Yan C, et al. Finite element simulation of the temperature and stress fields in single layers built without-support in selective laser melting[J]. Materials Design (1980-2015), 2013,52:638-647. [20] Xu G X, Wu C S, Qin G L, et al. Adaptive volumetric heat source models for laser beam and laser pulsed GMAW hybrid welding processes[J]. The International Journal of Advanced Manufacturing Technology, 2011,57(1-4):245-255. [21] Parry L, Ashcroft I A, Wildman R D. Understanding the effect of laser scan strategy on residual stress in selective laser melting through thermo-mechanical simulation[J]. Additive Manufacturing, 2016,12:1-15. [22] Zinovieva O, Zinoviev A, Ploshikhin V. Three-dimensional modeling of the microstructure evolution during metal additive manufacturing[J]. Computational Materials Science, 2018,141:207-220. [23] Khairallah S A, Anderson A T, Rubenchik A, et al. Laser powder-bed fusion additive manufacturing: Physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones[J]. Acta Materialia, 2016,108:36-45. [24] Craeghs T, Clijsters S, Yasa E, et al. Determination of geometrical factors in Layerwise Laser Melting using optical process monitoring[J]. Optics and Lasers in Engineering, 2011,49(12):1440-1446. [25] Dai D, Gu D. Tailoring surface quality through mass and momentum transfer modeling using a volume of fluid method in selective laser melting of TiC/AlSi10Mg powder[J]. International Journal of Machine Tools and Manufacture, 2015,88:95-107. [26] Foroozmehr A, Badrossamay M, Foroozmehr E, et al. Finite Element Simulation of Selective Laser Melting process considering Optical Penetration Depth of laser in powder bed[J]. Materials Design, 2016,89:255-263.
3. 毕业设计(论文)进程安排
2018.12.22-2019.3.1 查阅文献,完成外文翻译,完成开题报告。
2019.3.4-2019.3.17 制定实验研究方案,了解激光选区熔化基本原理,熟悉COMSOL模拟过程; 2019.3.18~2019.4.26 确定研究工艺参数的范围,使用COMSOL进行TC4激光选区熔化的单层单道模拟,并用MATLAB分析模拟数据; 2019.4.29~2019.5.5 撰写中期报告 参加中期检查答辩 2019.5.6~2019.5.19 进行实验验证,制备样品,检测样品孔隙率和拉伸力学性能; 2018.5.20~2018.6.13 整理数据,撰写论文,准备答辩, 参加毕业论文答辩
您可能感兴趣的文章
- 元素对Ti-xAl-yMo-zV和Ti-xAl-yMo-zCr β-Ti合金应变速 率敏感性的影响外文翻译资料
- 复合工艺提高先进钠离子电池的电位窗口外文翻译资料
- 氧化还原催化辅助下的高稳定钒氧化还原流电池外文翻译资料
- 用于高压可伸缩储能的电解锌锰电池外文翻译资料
- 表面活性剂改性疏水性Cu2O量子点作为高效钙钛矿太阳能电池顶部空穴传输材料外文翻译资料
- Nb 和 Ni 共掺杂 Mg(0001)氢解离扩散的理论研究:外文翻译资料
- 低温固相法制备锂离子电池正极材料LiFeSO4F毕业论文
- 锂空气电池新型正极催化剂Gd2Zr2O7的制备与性能研究毕业论文
- 酸类添加剂对beta”-Al2O3电泳沉积成型法的影响毕业论文
- CuZr非晶合金中短程有序结构及其与玻璃形成能力的关系研究毕业论文