登录

  • 登录
  • 忘记密码?点击找回

注册

  • 获取手机验证码 60
  • 注册

找回密码

  • 获取手机验证码60
  • 找回
毕业论文网 > 文献综述 > 理工学类 > 信息与计算科学 > 正文

随机森林算法在股票优选中的应用文献综述

 2020-04-29 18:50:19  

1.目的及意义

选择优资股票是股票投资中的关键抉择部分,是正确投资的必要选择,所谓的优质股票指的是股市中投资回报高,抗风险能力强,成长性好的优良股票。而股票的价格受到诸多因素的影响,表现出“毫无规律变化”的随机游动特性,因此选择其中的优质股票的难度比较大。在股票优化和选择问题中,主要可以归为两方面:影响价格的维度选择,即多个维度指标体系的决定和选择模型分类算法的确定,本文选择随机森林算法,解决股票投资中选择优质股票的实际问题。

随机森林(Random Forest) 是集成学习 (ensemble learning) 算法的一种,它利用多棵树对样本进行训练并预测的一种分类器,同样也可用户回归,其输出的类别是由个别树输出的类别的众数而定。 该算法最早由Leo Breiman和Adele Cutler提出, 而”Random Forests”是他们注册的商标。这个术语是1995年由贝尔实验室的Tin Kam Ho所提出的随机决策森林(random decision forests)而来的。简单来说,随机森林就是由多棵CART(Classification And Regression Tree)构成的。对于每棵树,它们使用的训练集是从总的训练集中有放回采样出来的,这意味着,总的训练集中的有些样本可能多次出现在一棵树的训练集中,也可能从未出现在一棵树的训练集中。

.随机森林训练过程:

1.用N来表示训练用例(样本)的个数,M表示特征数目。.从N个训练样本中以有放回抽样的方式,取样N次,形成一个训练集(即bootstrap取样),并用未抽到的用例(样本)作预测,评估其误差。

2.输入特征数目m,用于确定决策树上一个节点的决策结果;其中mlt;lt;Mmlt;lt;M2。

3.对于每一个节点(每个样本有M个属性时),随机选择m个特征,采用某种策略(比如信息增益)来选择1个属性作为该节点的分裂属性并进行分裂。

4.每棵树都会完整成长而不会剪枝(Pruning,这有可能在建完一棵正常树状分类器后会被采用)。

5.将生成的多棵分类树组成随机森林,用随机森林分类器对新的数据进行判别与分类,分类结果按树分类器的投票多少而定。

随机森林算法的优点:

剩余内容已隐藏,您需要先支付 10元 才能查看该篇文章全部内容!立即支付

企业微信

Copyright © 2010-2022 毕业论文网 站点地图