MOF衍生Co4S3/CC应用于高性能锂离子电池任务书
2020-05-01 08:39:44
1. 毕业设计(论文)的内容和要求
在金属硫化物中,硫化钴是一种环保材料,而且还具有一些特殊的性质,比如催化、电学和磁学等,因其理论比容量较高,已成为了钠电负极材料领域的研究热点和前沿。
但是与合金类、部分氧化物类似,硫化钴在充放电过程中体积膨胀比较明显,且其导电性也不太理想,在碳布上原位生长硫化钴克服了将活性电极材料与导电添加剂和粘合剂混合并且增加快速充电和放电过程的耐久性的缺点。
并且在碳布上原位生长的硫化钴纳米片具有三维网络结构,具有大的表面积。
2. 参考文献
1 Dunn, B., Kamath, H. amp; Tarascon, J. M. Electrical energy storage for the grid: a battery of choices. Science 334, 928-935, doi:10.1126/science.1212741 (2011). 2 Manthiram, A., Vadivel Murugan, A., Sarkar, A. amp; Muraliganth, T. Nanostructured electrode materials for electrochemical energy storage and conversion. Energy amp; Environmental Science 1, 621, doi:10.1039/b811802g (2008). 3 Reddy, M. V., Subba Rao, G. V. amp; Chowdari, B. V. Metal oxides and oxysalts as anode materials for Li ion batteries. Chemical reviews 113, 5364-5457, doi:10.1021/cr3001884 (2013). 4 Yang, Z. et al. Electrochemical energy storage for green grid. Chemical reviews 111, 3577-3613, doi:10.1021/cr100290v (2011). 5 Guo, Y.-G., Hu, J.-S. amp; Wan, L.-J. Nanostructured Materials for Electrochemical Energy Conversion and Storage Devices. Advanced materials 20, 2878-2887, doi:10.1002/adma.200800627 (2008). 6 Risacher, F. amp; Fritz, B. Origin of Salts and Brine Evolution of Bolivian and Chilean Salars. Aquatic Geochemistry 15, 123-157, doi:10.1007/s10498-008-9056-x (2008). 7 Yaksic, A. amp; Tilton, J. E. Using the cumulative availability curve to assess the threat of mineral depletion: The case of lithium. Resources Policy 34, 185-194, doi:10.1016/j.resourpol.2009.05.002 (2009). 8 Meister, P. et al. Best Practice: Performance and Cost Evaluation of Lithium Ion Battery Active Materials with Special Emphasis on Energy Efficiency. Chemistry of Materials 28, 7203-7217, doi:10.1021/acs.chemmater.6b02895 (2016). 9 Cao, X., Tan, C., Zhang, X., Zhao, W. amp; Zhang, H. Solution-Processed Two-Dimensional Metal Dichalcogenide-Based Nanomaterials for Energy Storage and Conversion. Advanced materials 28, 6167-6196, doi:10.1002/adma.201504833 (2016). 10 Hu, Z. et al. MoS2 nanoflowers with expanded interlayers as high-performance anodes for sodium-ion batteries. Angewandte Chemie 53, 12794-12798, doi:10.1002/anie.201407898 (2014). 11 Kundu, D., Talaie, E., Duffort, V. amp; Nazar, L. F. The emerging chemistry of sodium ion batteries for electrochemical energy storage. Angewandte Chemie 54, 3431-3448, doi:10.1002/anie.201410376 (2015). 12 Acerce, M., Voiry, D. amp; Chhowalla, M. Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials. Nature nanotechnology 10, 313-318, doi:10.1038/nnano.2015.40 (2015). 13 Yu, X. Y., Hu, H., Wang, Y., Chen, H. amp; Lou, X. W. Ultrathin MoS(2) Nanosheets Supported on N-doped Carbon Nanoboxes with Enhanced Lithium Storage and Electrocatalytic Properties. Angewandte Chemie 54, 7395-7398, doi:10.1002/anie.201502117 (2015). 14 Mahmood, N., Zhang, C. amp; Hou, Y. Nickel sulfide/nitrogen-doped graphene composites: phase-controlled synthesis and high performance anode materials for lithium ion batteries. Small 9, 1321-1328, doi:10.1002/smll.201203032 (2013). 15 Prikhodchenko, P. V. et al. Conversion of Hydroperoxoantimonate Coated Graphenes to Sb2S3@Graphene for a Superior Lithium Battery Anode. Chemistry of Materials 24, 4750-4757, doi:10.1021/cm3031818 (2012). 16 Xia, X. et al. Synthesis of free-standing metal sulfide nanoarrays via anion exchange reaction and their electrochemical energy storage application. Small 10, 766-773, doi:10.1002/smll.201302224 (2014). 17 Startsev, Y. K., Pronkin, A. A., Sokolov, I. A. amp; Murin, I. V. Electrical conductivity and structure of glasses in the Na2O-Na2S-P2O5 and Na2S-P2S5 systems. Glass Physics and Chemistry 37, 263-282, doi:10.1134/s1087659611030138 (2011). 18 Shadike, Z., Cao, M.-H., Ding, F., Sang, L. amp; Fu, Z.-W. Improved electrochemical performance of CoS2#8211;MWCNT nanocomposites for sodium-ion batteries. Chemical Communications 51, 10486-10489, doi:10.1039/c5cc02564h (2015). 19 Peng, S. et al. Unique Cobalt Sulfide/Reduced Graphene Oxide Composite as an Anode for Sodium-Ion Batteries with Superior Rate Capability and Long Cycling Stability. Small 12, 1359-1368, doi:10.1002/smll.201502788 (2016). 20 Zhou, Q. et al. Co3S4@polyaniline nanotubes as high-performance anode materials for sodium ion batteries. Journal of Materials Chemistry A 4, 5505-5516, doi:10.1039/c6ta01497f (2016). 21 Guo, Q. et al. Cobalt Sulfide Quantum Dot Embedded N/S-Doped Carbon Nanosheets with Superior Reversibility and Rate Capability for Sodium-Ion Batteries. ACS nano 11, 12658-12667, doi:10.1021/acsnano.7b07132 (2017). 22 Ko, Y. N. amp; Kang, Y. C. Co9S8#8211;carbon composite as anode materials with improved Na-storage performance. Carbon 94, 85-90, doi:10.1016/j.carbon.2015.06.064 (2015). 23 Xiao, Y., Hwang, J.-Y., Belharouak, I. amp; Sun, Y.-K. Superior Li/Na-storage capability of a carbon-free hierarchical CoS x hollow nanostructure. Nano Energy 32, 320-328, doi:10.1016/j.nanoen.2016.12.053 (2017). 24 Li, Q. et al. Self-adaptive mesoporous CoS@alveolus-like carbon yolk-shell microsphere for alkali cations storage. Nano Energy 41, 109-116, doi:10.1016/j.nanoen.2017.09.022 (2017).
3. 毕业设计(论文)进程安排
12.12-1.13 查阅文献,翻译英文文献,开题 3.13-4.28 实验 4.28-5.12 论文中期检查 5.12-5.28 实验总结 5.28-6.9 撰写论文及论文答辩
您可能感兴趣的文章
- 元素对Ti-xAl-yMo-zV和Ti-xAl-yMo-zCr β-Ti合金应变速 率敏感性的影响外文翻译资料
- 复合工艺提高先进钠离子电池的电位窗口外文翻译资料
- 氧化还原催化辅助下的高稳定钒氧化还原流电池外文翻译资料
- 用于高压可伸缩储能的电解锌锰电池外文翻译资料
- 表面活性剂改性疏水性Cu2O量子点作为高效钙钛矿太阳能电池顶部空穴传输材料外文翻译资料
- Nb 和 Ni 共掺杂 Mg(0001)氢解离扩散的理论研究:外文翻译资料
- 低温固相法制备锂离子电池正极材料LiFeSO4F毕业论文
- 锂空气电池新型正极催化剂Gd2Zr2O7的制备与性能研究毕业论文
- 酸类添加剂对beta”-Al2O3电泳沉积成型法的影响毕业论文
- CuZr非晶合金中短程有序结构及其与玻璃形成能力的关系研究毕业论文