高稳定性Mg95Ni5-TiC纳米复合储氢材料的制备及储氢机理任务书
2020-05-01 08:42:06
1. 毕业设计(论文)的内容和要求
毕业论文内容: 镁基储氢合金由于其理论储氢量高(mgh2为 7.6 wt.%)、资源丰富、价格低廉等优势被认为是最具潜力的储氢材料之一。
但是其动力学和热力学性能较差,制约其实际应用。
利用氢化燃烧合成(hcs)与高能球磨(mm)复合(hcs mm)技术制备镁基储氢材料由本课题组首创,hcs mm制备纳米镁基合金储氢材料的优良特性如下:1、无活化首次吸氢即达饱和吸氢量;2、在373 k,3.0 mpa氢压,100 s内吸氢量达到5.33 wt.%;3、在523 k,30 min内放氢转化率达到86.5%(转化率以523 k吸氢量5.61 wt.%折算);4、起始放氢温度降至460 k,比传统方法制备样品下降了近150 k。
2. 参考文献
[1] Iea I E A. Key World Energy Statistics 2014 [J]. International Energy Agency, 2015, 2011(1):3. [2] Targets for onboard Hydrogen storage systems for Light Duty Vehicles, US DOE. http://www1.Eere. [3] Lim, K. L,H. Kazemian, et al. Solid-state Materials and Methods for Hydrogen Storage: A Critical Review [J]. Chemical Engineering Technology, 2010, 33(2): 213-226. [4] Hao Gu, Yunfeng Zhu, Liquan Li. Structures and hydrogen storage properties of Mg95Ni5 composite prepared by hydriding combustion synthesis and mechanical milling [J]. Mater. Chem. Phys., 2008, 112: 218-222. [5] Zhou Shixue, Zhang Xiaoli, Li Tao, et al. Nano-confined magnesium for hydrogen storage from reactive milling with anthracite carbon as milling aid[J]. International Journal of Hydrogen Energy, 2014.39(25): 13628-13633. [6] 叶素云,朱敏,纳米添加物对镁基合金储氢性能的影响 [J].自然科学进展,2007, 17: 1105-1113. [7] Wagemans R W P, van Lenthe J H, de Jongh P E, et al. Hydrogen Storage in Magnesium Clusters: Quantum Chemical Study [J]. P. J Am Chem Soc, 2005, 127: 16675-16680. [8] Ouyang L Z, Ye S Y, Dong H W, et al. Effect of interfacial free energy on hydriding reaction of Mg-Ni thin films [J]. Appl. Phys. Lett., 2007, 90: 021917-1-3. [9] Hu F, Zhang Y H, Zhang Y, et al. Electrochemical and kinetic study of as-cast and as-quench Mg2Ni-type hydrogen storage alloys [J]. J. Materials Research, 2013, 28(19): 2701-2708. [10] Lei Y Q, Wu Y M, Yang Q M, et al. Electrochemical behavior of some mechanically alloyed Mg-Ni-based amorphous hydrogen storage alloys [J]. Zeitschrift fur Physikalische Chemie, 1994, 183(Part 1-2): 379-384. [11] Zaluska A, Zaluski L, Strom-Olsen J O. Nanocrystalline magnesium for hydrogen storage [J]. Journal of Alloys and Compounds, 1999, 288(1-2): 217-225. [12] Varin R A, Czujko T, Wronski Z. Particle size, grain size and gamma-MgH2 effects on the desorption properties of nanocrystalline commercial magnesium hydride processed by controlled mechanical milling [J]. NANOTECHNOLOGY, 2006. 17(15): 3856-3865. [13] Imamura H, Tabata S, Takesue Y, et al. Hydriding-dehydriding behavior of magnesium composites obtained by mechanical grinding with graphite carbon [J]. Int. J. Hydrogen Energy, 2000, 25: 837-843. [14] Imamura H, Masanari K, Kusuhara M, et al. High hydrogen storage capacity of nanosized magnesium synthesized by high energy ball-milling [J]. Journal of Alloys and Compounds. 2005, 386(1-2): 211-216. [15] Jeon Ki-Joon, Theodore A, Wu C Y, et al. Hydrogen absorption/desorption kinetics of magnesium nano-nickel composites synthesized by dry particle coating technique [J]. Int. J. Hydrogen Energy, 2007, 32(12): 1860-1868. [16] El-Eskandarany M S, Shaban E, Ali N, et al. In-situ catalyzation approach for enhancing the hydrogenation/ dehydrogenation kinetics of MgH2 powders with Ni particles [J]. Scientific Reports, 2016, (63): 37335(1-13). [17] Zhang J, Qu H, Wu G, et al. Remarkably enhanced dehydrogenation properties and mechanisms of MgH2 by sequential-doping of nickel and grapheme [J]. Int. J. Hydrogen Energy, 2016, 41(39): 17433-17441. [18] Liu Y F, Du H F, Zhang X, et al. Superior catalytic activity derived from a two-dimensional Ti3C2 precursor towards the hydrogen storage reaction of magnesium hydride [J]. CHEMICAL COMMUNICATIONS, 2016, 52(4): 705-708. [19] Wang J C, Du Y, Sun L X. Understanding of hydrogen desorption mechanism from defect point of view [J]. National Science Review, 2017, 0: 1-3. [20] Cui J, Liu J, Wang H, et al. Mg#8211;TM (TM: Ti, Nb, V, Co, Mo or Ni) core#8211;shell like nanostructures: synthesis, hydrogen storage performance and catalytic mechanism [J]. Journal of Materials Chemistry A, 2014, 2(25): 9645-9655. [21] Calizzi M, Chericoni D, Jepsen L H, et al. Mg-Ti nanoparticles with superior kinetics for hydrogen storage [J]. Int. J. Hydrogen Energy, 2016, 41(32): 14447-14454. [22] Shin J H, Lee G, Cho Y W, et al. Improvement of hydrogen sorption properties of MgH2 with various sizes and stoichiometric compositions of TiC [J]. Catalysis Today, 2009, 146 (1-2): 209-215. [23] Tian M, Shang C X. Nano-structured MgH2 catalyzed by TiC nanoparticles for hydrogen storage [J]. Journal of Chemical Technology Biotechnology, 2011, 86(1): 69-74. [24] Rafi-ud-din, Lin Z, Li P, et al. Catalytic effects of nano-sized TiC additions on the hydrogen storage properties of LiAlH4 [J]. Journal of Alloys and Compounds, 2010, 508(1): 119-128. [25] Zhao Y, Dillon A C, Kim Y H, et al. Self-catalyzed hydrogenation and dihydrogen adsorption on titanium carbide nanoparticles [J]. Chemical Physics Letters, 2006, 425: 273-277. [26] Fan M Q, Liu S S, Zhang Y, et al. Superior hydrogen storage properties of MgH2-10 wt.% TiC composite [J]. Energy, 2010, 35(8): 3417-3421. [27]El-Eskandarany M S, Shaban E, Alsairafi A A. Synergistic dosing effect of TiC/FeCr nanocatalysts on the hydrogenation/dehydrogenation kinetics of nanocrystalline MgH2 powders [J]. Energy. 2016.104: 158-170.
3. 毕业设计(论文)进程安排
2018.12.25~ 2019.1.11 中国期刊网、维普数据库以及Elsevier数据库等数据库查阅国内外相关文献 2019.1.12 ~ 2019.1.18 撰写开题报告 2019.1.19 ~ 2019.3.5 HCS MM法制备Mg95Ni5 2019.3.6 ~ 2019.3.26 通过机械球磨向Mg95Ni5储氢材料中加入TiC催化剂,并研究其储氢性能 2019.3.27~ 2019.4.14 通过HCS MM法一步制备Mg95Ni5 TiC复合材料,并研究其储氢性能 2019.4.15 ~ 2019.5.7 探究TiC对Mg95Ni5储氢性能的催化原理 2018.5.8~ 2018.6.3 撰写毕业论文 2018.6.4~ 2018.6.14 完成毕业论文及答辩 2018.6.15~ 2018.7.12 总结、归档