氢化燃烧合成制备镁铝合金的水解制氢性能任务书
2020-05-01 08:42:17
1. 毕业设计(论文)的内容和要求
固态储氢体系中,氢化镁因其储氢量高(7.6 wt.%)、原料来源丰富、价格低廉、对环境影响小等优点而备受关注。
然而氢化镁放氢热力学性能较差,通常需要在较高温度(573 k)下才可放氢,阻碍了氢化镁的实际应用。
近年来,氢化镁水解释氢研究吸引了众多研究者,因为氢化镁水解释氢可在常温下进行,且放氢量高达15.2 wt.%(或1703 ml/g,考虑水由氢燃料电池反应生成,只计mgh2重量)。
2. 参考文献
[1] Barbir F. Transition to renewable energy systems with hydrogen as an energy carrier[J]. Energy, 2009, 34(3): 308-12. [2] David E. An overview of advanced materials for hydrogen storage[J]. Journal of Materials Processing Technology, 2005, 162-163169-77. [3] He T, Pachfule P, Wu H, et al. Hydrogen carriers[J]. Nature Reviews Materials, 2016, 116059. [4] Chen P, Zhu M. Recent progress in hydrogen storage[J]. Materials Today, 2008, 11(12): 36-43. [5] Jena P. Materials for Hydrogen storage: past, present, and future[J]. The Journal of Physical Chemistry Letters, 2011, 2(3): 206-11. [6] Winter C J. Hydrogen energy #8212; Abundant, efficient, clean: a debate over the energy system of change[J]. International Journal of Hydrogen Energy, 2009, 34(14, Supplement 1): S1-S52. [7] 胡子龙. 贮氢材料[M]. 北京:化学工业出版社,2002. [8] Andrews J, Shabani B. Re-envisioning the role of hydrogen in a sustainable energy economy[J]. International Journal of Hydrogen Energy, 2012, 37(2): 1184-203. [9] Chu S, Majumdar A. Opportunities and challenges for a sustainable energy future[J]. Nature, 2012, 488(7411): 294-303. [10] Wang H, Lin H J, Cai W T, et al. Tuning kinetics and thermodynamics of hydrogen storage in light metal element based systems- a review of recent progress[J]. Journal of Alloys and Compounds, 2016, 658280-300. [11] Aguey-Zinsou K F, Ares-Fern#225;ndez J R. Hydrogen in magnesium: new perspectives toward functional stores[J]. Energy Environmental Science, 2010, 3(5): 526. [12] House S D, Vajo J J, Ren C, et al. Effect of ball-milling duration and dehydrogenation on the morphology, microstructure and catalyst dispersion in Ni-catalyzed MgH2 hydrogen storage materials[J]. Acta Materialia, 2015, 86: 55-68. [13] Yermakov A Y, Boukhvalov D W, Uimin M A, et al. Hydrogen dissociation catalyzed by carbon-coated nickel nanoparticles: experiment and theory[J]. ChemPhysChem, 2013, 14(2): 381-5. [14] Lin H J, Tang J J, Yu Q, et al. Symbiotic CeH2.73/CeO2 catalyst: a novel hydrogen pump[J]. Nano Energy, 2014, 9: 80-7. [15] Yang R T, Wang Y. Catalyzed hydrogen spillover for hydrogen storage[J]. Journal of the American Chemical Society, 2009, 131(12): 4224-6. [16] Liu Y N, Zou J X, Zeng X Q, et al. Hydrogen storage properties of a Mg#8211;Ni nanocomposite coprecipitated from solution[J]. The Journal of Physical Chemistry C, 2014, 118(32): 18401-11. [17] Wagemans R W P, van Lenthe J H, de Jongh P E, et al. Hydrogen storage in magnesium clusters:#8201; quantum chemical study[J]. Journal of the American Chemical Society, 2005, 127(47): 16675-80. [18] Fu H, Wu W, Dou Y, et al. Hydrogen diffusion kinetics and structural integrity of superhigh pressure Mg-5 wt%Ni alloys with dendrite interface[J]. Journal of Power Sources, 2016, 320212-21. [19] An C, Liu G, Li L, et al. In situ synthesized one-dimensional porous Ni@C nanorods as catalysts for hydrogen storage properties of MgH2[J]. Nanoscale, 2014, 6(6): 3223-30. [20] Xie X, Ma X, Liu P, et al. Formation of multiple-phase catalysts for the hydrogen storage of mg nanoparticles by adding flowerlike NiS[J]. ACS Applied Materials Interfaces, 2017, 9(7): 5937-46. [21] Wang J H, Pan H G, Li R, et al. The effect of particle size on the electrode performance of Ti-V-based hydrogen storage alloys[J]. International Journal of Hydrogen Energy, 2007, 32(15): 3381-6. [22] Norberg N S, Arthur T S, Fredrick S J, et al. Size-dependent hydrogen storage properties of Mg nanocrystals prepared from solution[J]. Journal of the American Chemical Society, 2011, 133(28): 10679-81. [23] Tsao C S, Tzeng Y R, Yu M S, et al. Effect of catalyst size on hydrogen storage capacity of Pt-impregnated active carbon via spillover[J]. Journal of Physical Chemistry Letters, 2010, 1(7): 1060-3. [24] Li G, Kobayashi H, Dekura S, et al. Shape-dependent hydrogen-storage properties in Pd nanocrystals: which does hydrogen prefer, octahedron (111) or cube (100)?[J]. Journal of the American Chemical Society, 2014, 136(29): 10222-5. [25] Hassan M A H, Abdelsayed V, Khder A E R S, et al. Microwave synthesis of graphene sheets supporting metal nanocrystals in aqueous and organic media[J]. Journal of Materials Chemistry, 2009, 19(23): 3832-7. [26] Nouneh K, Oyama M, Diaz R, et al. Nanoscale synthesis and optical features of metallic nickel nanoparticles by wet chemical approaches[J]. Journal of Alloys and Compounds, 2011, 509(19): 5882-6. [27] Sidhaye D S, Bala T, Srinath S, et al. Preparation of nearly monodisperse nickel nanoparticles by a facile solution based methodology and their ordered assemblies[J]. Journal of Physical Chemistry C, 2009, 113(9): 3426-9. [28] Chen D H, Wu S H. Synthesis of nickel nanoparticles in water-in-oil microemulsions[J]. Chemistry of Materials, 2000, 12(5): 1354-60. [29] Pan Y, Jia R, Zhao J, et al. Size-controlled synthesis of monodisperse nickel nanoparticles and investigation of their magnetic and catalytic properties[J]. Applied Surface Science, 2014, 316276-85. [30] Hou Y, Kondoh H, Ohta T, et al. Size-controlled synthesis of nickel nanoparticles[J]. Applied Surface Science, 2005, 241(1-2): 218-22. [31] Thanh N T K, Maclean N, Mahiddine S. Mechanisms of nucleation and growth of nanoparticles in solution[J]. Chemical Reviews, 2014, 114(15): 7610-30.
3. 毕业设计(论文)进程安排
2018.12.25~ 2019.1.8#160; 中国期刊网、维普数据库以及Elsevier数据库等数据库查阅国内外相关文献 2019.1.9 ~ 2019.1.18#160; 撰写开题报告、外文翻译 2019.1.19 ~ 2019.3.5#160; 通过氢化燃烧法制备镁铝合金,并探究HCS工艺对合金水解性能的影响 2019.3.6 ~ 2019.4.14#160; 探究球磨工艺对HCS后的镁铝合金水解性能的影响 2019.4.15 ~ 2019.5.7#160; 探究水解工艺对HCS后的镁铝合金水解性能的影响 2018.5.8~ 2018.6.3 撰写毕业论文#160;#160;#160;#160;#160;#160;#160;#160; 2018.6.4~ 2018.6.14 完成毕业论文及答辩#160;#160;#160;#160; 2018.6.15~ 2018.7.12 总结、归档