登录

  • 登录
  • 忘记密码?点击找回

注册

  • 获取手机验证码 60
  • 注册

找回密码

  • 获取手机验证码60
  • 找回
毕业论文网 > 任务书 > 材料类 > 材料科学与工程 > 正文

硅/石墨烯复合气凝胶的制备和电化学性能任务书

 2020-05-02 17:11:09  

1. 毕业设计(论文)的内容和要求

本论文的主要内容是对硅/碳复合材料作为锂离子电池负极材料在国内外的研究现状、应用与发展进行了简要的阐述。

简述单质硅/石墨烯气凝胶复合材料的结构特点、溶胶-凝胶制备工艺和应用前景。

对不同硅掺杂量的单质硅/石墨烯气凝胶复合材料的制备参数及其性能表征进行了研究,同时将其应用于锂离子电池负极材料中,这对于抑制硅作为锂离子电池负极材料的体积膨胀和提高硅/石墨烯复合气凝胶的实际放电容量和循环稳定性具有很好的借鉴意义和应用前景。

剩余内容已隐藏,您需要先支付后才能查看该篇文章全部内容!

2. 参考文献

1史亚春, 李铁虎, 吕婧, 等. 气凝胶材料的研究进展[J]. 材料导报, 2013, 27(9): 20. 2张旋宇, 徐丽慧, 沈勇, 等. 疏水SiO2气凝胶的制备及应用研究进展[J]. 硅酸盐通报, 2017, 10(36): 3318. 3Pekala R W. Organic aerogels from the polycondensation of resorcional with formaldehyde[J]. Journal of Materials Science, 1989, 24(9): 3221. 4Liu W, Herrmann A K, Bigall N C, et al. Noble metal aerogels-synthesis, characterization, and application as electrocatalysts.[J]. Accounts of Chemical Research, 2015, 48(2):154. 5巢亚军, 原鲜霞, 杜鹃, 等. 炭气凝胶在电化学能源材料中的应用研究进展[J]. 材料科学与工艺, 2009, 17(4): 492. 6Dong D, Guo H, Li G, et al. Assembling hollow carbon sphere-graphene polylithic aerogels for thermoelectric cells[J]. Nano Energy, 2017, 39: 470. 7Rahman M A , Song G , Bhatt A I , et al. Nanostructured silicon anodes for high-performance lithium-ion batteries[J]. Advanced Functional Materials, 2016, 26(5): 647. 8Liu N , Wu H , Mcdowell M T , et al. A yolk-shell design for stabilized and scalable li-ion battery alloy anodes[J]. Nano Letters, 2012, 12(6): 3315. 9Wang, Wei J , Mao, et al. Two-phase electrochemical lithiation in amorphous silicon[J]. Nano Letters, 2013, 13(2): 709. 10Zhong H , Zhan H , Zhou Y H . Synthesis of nanosized mesoporous silicon by magnesium-thermal method used as anode material for lithium ion battery[J]. Journal of Power Sources, 2014, 262: 10. 11Chen Y , Liu L , Xiong J , et al. Porous Si nanowires from cheap metallurgical silicon stabilized by a surface oxide layer for lithium ion batteries[J]. Advanced Functional Materials, 2016, 25(43): 6701. 12Park M H, Min G K, Joo J, et al. Silicon nanotube battery anodes[J]. Nano Letters, 2009, 9(11): 3844. 13Polat B D , Keles O . Functionally graded Si based thin films as negative electrodes for next generation lithium ion batteries[J]. Electrochimica Acta, 2016, 187: 293. 14Jia H , Gao P , Yang J , et al. Novel three-dimensional mesoporous silicon for high power lithium-ion battery anode material[J]. Advanced Energy Materials, 2011, 1(6): 1036. 15Li M , Yu Y , Li J , et al. Fabrication of graphene nanoplatelets-supported SiOx-disordered carbon composite and its application in lithium-ion batteries[J]. Journal of Power Sources, 2015, 293: 976. 16于晓磊, 杨军, 冯雪娇, 等. 多孔硅/碳复合负极材料的制备及电化学性能[J]. 无机材料学报, 2013, 28(9): 937. 17于晓磊. 锂离子电池用高性能硅碳复合负极材料的制备与性能研究[D]. 上海交通大学, 2013. 18Jeong J H , Kim K H , Jung D W , et al. High-performance characteristics of silicon inverse opal synthesized by the simple magnesium reduction as anodes for lithium-ion batteries[J]. Journal of Power Sources, 2015, 300: 182. 19高鹏飞, 付建伟, 杨军, 等. 核壳型硅碳复合材料的制备及电化学研究[C]// 全国化学与物理电源学术年会. 2009. 20高鹏飞. 锂离子电池硅基复合负极材料的制备及电化学研究[D]. 上海交通大学, 2013. 21王利娜. 硅/碳纳米管复合负极材料的制备及其电化学性能研究[D]. 2016. 22周志斌, 许云华, 刘文刚, 等. 新型锂电池负极复合材料硅/无定形碳/碳纳米管的制备及性能研究[J]. 化工新型材料, 2011, 39(7): 59. 23杨伟, 陈胜洲, 薛建军,等. 不同碳气凝胶导电剂对Li-MnO2电池性能的影响[J]. 华南理工大学学报(自然科学版), 2015, 43(6): 37. 24龚青. TiO2/石墨烯气凝胶的结构控制及其电化学性能[D]. 2016. 25Wang Y,#160;Jin Y H,#160;Zhao C C, et al. 1D ultrafine SnO2 nanorods anchored on 3D#160;graphene#160;aerogels with hierarchical porous structures for high-performance#160;lithium/sodium storage[J]. Journal of Colloid and Interface Science, 2018, 532: 352. 26邓晓梅. 石墨烯基锂离子电池负极材料的制备与性能研究[D]. 太原理工大学, 2015. 27Shim H C , Kim I , Woo C S , et al. Nanospherical solid electrolyte interface layer formation in binder-free carbon nanotube aerogel/Si nanohybrids to provide lithium-ion battery anodes with a long-cycle life and high capacity[J]. Nanoscale, 2017, 9(14): 4713. 28Jing S L , Jiang H , Hu Y J , et al. Face-to-Face contact and open-void coinvolved Si/C nanohybrids lithium-ion battery anodes with extremelylong cycle life[J]. Advanced Functional Materials, 2015, 25(33): 5395.

3. 毕业设计(论文)进程安排

起讫日期 设计(论文)各阶段工作内容 备 注 2018.12.3~2018.12.21 查阅文献资料 2018.12.22~2019.1.18 拟定实验方案,撰写开题报告 12.30~1.1 元旦假期 2019.2.25~2019.3.31 完成初步实验工作,并开展初步测试 2019.4.1~2019.6.3 进行中期检查,完成实验和测试 4.5~4.7清明假期 5.1~5.2五一假期 2019.6.4~2019.6.14 撰写毕业论文,答辩 6.7~6.9 端午假期

剩余内容已隐藏,您需要先支付 10元 才能查看该篇文章全部内容!立即支付

企业微信

Copyright © 2010-2022 毕业论文网 站点地图