登录

  • 登录
  • 忘记密码?点击找回

注册

  • 获取手机验证码 60
  • 注册

找回密码

  • 获取手机验证码60
  • 找回
毕业论文网 > 任务书 > 机械机电类 > 焊接技术与工程 > 正文

P91钢补焊焊接残余应力规律研究任务书

 2020-05-05 17:28:09  

1. 毕业设计(论文)的内容和要求

毕业设计内容: 高强钢焊接接头在补焊过程中存在诸多困难,如果焊接工艺选择不当,容易产生越焊越裂的情形。

本项目是国家十三五重点研发计划研究的一部分。

本课题拟采用弹塑性有限元方法,开发结构-热顺序耦合技术,考虑马氏体相变过程,实现虚拟焊接过程,采用数值方法研究p91钢补焊结构的焊接残余应力分布,以寻求合理的焊接修补工艺。

剩余内容已隐藏,您需要先支付后才能查看该篇文章全部内容!

2. 参考文献

[1] Klueh RL. Elevated temperature ferritic and martensitic steels and their application to future nuclear reactors[J]. Int Mater Rev 2005,50(5):287#8211;310. [2] Yaghi A H, Hyde T H, Becker A A, et al. Residual stress simulation in welded sections of P91 pipes[J]. Journal of Materials Processing Technology, 2005,167(2-3):480-487. [3] Deng D, Murakawa H. Prediction of welding residual stress in multi-pass butt-welded modified 9Cr#8211;1Mo steel pipe considering phase transformation effects[J]. Computational Materials Science, 2006,37(3):209-219. [4] Kumar S, Awasthi R, Viswanadham C S, et al. Thermo-metallurgical and thermo-mechanical computations for laser welded joint in 9Cr#8211;1Mo(V, Nb) ferritic/martensitic steel[J]. Materials Design, 2014,59:211-220. [5] Zubairuddin M, Albert S K, Mahadevan S, et al. Experimental and finite element analysis of residual stress and distortion in GTA welding of modified 9Cr-1Mo steel[J]. Journal of Mechanical Science and Technology, 2014,28(12):5095-5105. [6] Moraitis G A, Labeas G N. Prediction of residual stresses and distortions due to laser beam welding of butt joints in pressure vessels[J]. International Journal of Pressure Vessels and Piping, 2009,86(2-3):133-142. [7] Xia J, Jin H. Numerical modeling of coupling thermal#8211;metallurgical transformation phenomena of structural steel in the welding process[J]. Advances in Engineering Software, 2018,115:66-74. [8] Yaghi A H, Hyde T H, Becker A A, et al. Numerical simulation of P91 pipe welding including the effects of solid-state phase transformation on residual stresses[J]. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2007,221(4):213-224. [9] Goldak J, Chakravarti A, Bibby M. A new finite element model for welding heat sources[J]. Metallurgical Transactions B, 1984,15(2):299-305. [10] B#233;res, L., Balogh, A., and Irmer,W. Welding of martensitic creep-resistant steels. [J].Suppl. Weld., 2001, 80(8) : 191-195. [11] Yaghi A H, Hyde T H, Becker A A, et al. A comparison between measured and modelled residual stresses in a circumferentially butt-welded P91 steel pipe [J]. ASME J. Pres. Ves. Technol., 2010, 132, 011206-1#8211;011206-10. [12] Koistinen DP, Marburger RE. A general equation prescribing the extent of the austenite#8211;martensite transformation in pure iron#8211;carbon alloys and plain carbon steels[J].Acta Metall 1959(7):59#8211;60. [13] Abdollahpoor A, Chen X, Pereira M P, et al. Sensitivity of the final properties of tailored hot stamping components to the process and material parameters[J]. Journal of Materials Processing Technology, 2016,228:125-136. [14] Lee M, Kim S, Han H N, et al. Implicit finite element formulations for multi-phase transformation in high carbon steel[J]. International Journal of Plasticity, 2009,25(9):1726-1758. [15] Leblond J B, Devaux J, Devaux J C. Mathematical modelling of transformation plasticity in steels I: Case of ideal-plastic phases[J]. International Journal of Plasticity, 1989,5(6):551-572. [16] Karlsson, C. T. Finite Element Analysis of Temperatures and Stresses in a Single-Pass Butt-Welded Pipe#8212;Influence of Mesh Density and Material Modeling[J]. Eng. Comput., 1989,6 :133#8211;141. [17] Kundu A, Bouchard P J, Kumar S, et al. Residual stresses in P91 steel electron beam welds[J]. Science and Technology of Welding and Joining, 2013,18(1):70-75. [18] Fricke. S., Keim. E., Schmidt. J. Numerical weld modeling #8212; a method for calculating weld-induced residual stresses[J]. Nuclear Engineering and Design 2001 (206) :139#8211;150 [19] Wei Jiang,Kadda Yahiaoui. Finite Element Prediction of Residual Stress Distributions in a Multipass Welded Piping Branch Junction[J] Journal of Pressure Vessel Technology, 2007(129): 601-608 [20] Dean Deng, Hidekazu Murakawa, Wei Liang. Numerical and experimental investigations on welding residual stress in multi-pass butt-welded austenitic stainless steel pipe[J]. Computational Materials Science, 2008 (42): 234-244. [21] 李振江. 基于SYSWELD的焊接接头温度场和残余应力场研究[D]. 北京交通大学,2010 [22] 鲁丽君,白世武,丁红胜. 焊接接头有限元模拟的研究进展[J]. 金属世界,2008 [23] 朱援祥,张小飞,杨兵等. 基于有限元的多次补焊焊接残余应力的数值模拟[J]. 焊接学报,2002,23(1):65-68. [24] 汤洁,蒋文春,巩建鸣. 16MnR钢焊接接头多次补焊残余应力数值模拟[J]. 焊接,2007(11):41-44. [25] 付建科,卢泽民,雷小平,李修能. 多层焊对接接头焊接残余应力有限元分析[J]. 热加工工艺,2010 [26] 余正刚,姜勇,巩建鸣,涂善东,朱瑞松,奚冬兴. 不同异种钢管道焊接接头残余应力的数值模拟[J]. 焊接学报,2009 . [27] 张心保. 电站锅炉过热管异种钢焊接性研究[D]. 太原理工大学,2002. . [28] 胡晓勇. 承压容器焊接接头残余应力测试及有限元分析[D]. 南京理工大学,2013 . [29] 李华. 焊接接头残余应力的数值模拟[D]. 大连交通大学,2006 [30] 朱援祥,王勤,赵学荣,孙秦明. 基于ANSYS平台的焊接残余应力模拟[J]. 武汉理工大学学报,2004

3. 毕业设计(论文)进程安排

2018.11.15~2018.11.30 熟悉任务、文献检索 2018.12.1~2019.1.18 撰写开题报告 2019.2.25~2019.3.15 了解焊接接头焊接残余应力的产生原因,分析影响焊接残余应力的因素 2019.3.16~2019.3.31 熟悉国内外相关焊接残余规范,总结残余应力分布规律 2019.4.1~2019.4.15 掌握结构-热顺序耦合技术开展焊接残余应力模拟的方法,建立残余应力分析模型 2019.4.16~2019.5.15 开展焊接修补焊材、焊接热输入对焊接修补过程的影响分析 2019.5.16~2019.5.31 采用正交试验方法开展P91钢焊接修补工艺优化 2019.6.1~2019.6.10 撰写设计计算书及论文 2019.6.11~2019.6.16 准备论文答辩材料

剩余内容已隐藏,您需要先支付 10元 才能查看该篇文章全部内容!立即支付

企业微信

Copyright © 2010-2022 毕业论文网 站点地图