登录

  • 登录
  • 忘记密码?点击找回

注册

  • 获取手机验证码 60
  • 注册

找回密码

  • 获取手机验证码60
  • 找回
毕业论文网 > 任务书 > 机械机电类 > 过程装备与控制工程 > 正文

3D打印技术在人体骨骼方面的应用研究任务书

 2020-05-05 20:18:06  

1. 毕业设计(论文)的内容和要求

1. 文献整理和总结,主要包括:有哪些3D打印技术可用于人体骨骼支架(或骨骼)及各项技术的特点;有哪些材料可用于3D打印人体骨骼支架(或骨骼),以及各种材料的优缺点 2. 用建模软件(AutoCAD或Solidworks或Pro/E或UG等)建立至少两种人体骨骼支架的3D模型,每一种3D模型应具有不同的结构设计 3. 对每一种3D骨骼支架模型进行有限元分析,分析骨骼支架模型变形和结构之间的关系,分析骨骼支架应力和结构之间的关系

2. 参考文献

[1] M. A. Al et al., ”Novel Carbazole Skeleton-Based Photoinitiators for LED Polymerization and LED Projector 3D Printing,” Molecules, vol. 22, no. 12, pp. 1-14, 2017. [2] Al-Jassir et al., ”In vitro assessment of Function Graded (FG) artificial Hip joint stem in;terms of bone/cement stresses: 3D Finite Element (FE) study,” Biomedical Engineering Online, vol. 12, no. 1, pp. 5, 2013. [3] N. Ashammakhi, and O. Kaarela, ”Three-Dimensional Bioprinting Can Help Bone,” Journal of Craniofacial Surgery, vol. 29, no. 1, pp. 9, 2018. [4] S. M. Barinov et al., ”3D printing of ceramic scaffolds for engineering of bone tissue,” Inorganic Materials Applied Research, vol. 6, no. 4, pp. 316-322, 2015. [5] S. T. Bendtsen, S. P. Quinnell, and M. Wei, ”Development of a novel alginate-polyvinyl alcohol-hydroxyapatite hydrogel for 3D bioprinting bone tissue engineered scaffolds,” Journal of Biomedical Materials Research Part A, vol. 105, no. 5, pp. 1457-1468, 2017. [6] B. Berman, ”3-D printing: The new industrial revolution,” Business Horizons, vol. 55, no. 2, pp. 155-162, 2012. [7] S. Bose, S. Vahabzadeh, and A. Bandyopadhyay, ”Bone tissue engineering using 3D printing,” Materials Today, vol. 16, no. 12, pp. 496-504, 2013. [8] N. J. Castro, and D. W. Hutmacher, ”Designification of Neurotechnological Devices through 3D Printed Functional Materials,” Advanced Functional Materials, pp. 1703905, 2017. [9] W. J. Choy et al., ”Reconstruction of the thoracic spine using a personalized 3D-printed vertebral body in an adolescent with a T9 primary bone tumour: case report,” World Neurosurgery, vol. 105, 2017. [10] S. C. Cox et al., ”3D printing of porous hydroxyapatite scaffolds intended for use in bone tissue engineering applications,” Mater Sci Eng C Mater Biol Appl, vol. 47, pp. 237-247, 2015. [11] J. R. Davidson et al., ”A Design Paradigm Utilizing Reversible Diels-Alder Reactions to Enhance the Mechanical Properties of 3D Printed Materials,” Acs Applied Materials Interfaces, vol. 8, no. 26, pp. 16961, 2016. [12] X. Du, S. Fu, and Y. Zhu, ”3D Printing of Ceramic-Based Scaffolds for Bone Tissue Engineering: An Overview,” Journal of Materials Chemistry B, vol. 6, no. 27, 2018. [13] K. A. Eley, S. R. Watt-Smith, and S. J. Golding, ”"Black Bone" MRI: a novel imaging technique for 3D printing,” Dentomaxillofac Radiol, vol. 46, no. 3, pp. 20160407, 2017. [14] A. Farzadi et al., ”Effect of layer printing delay on mechanical properties and dimensional accuracy of 3D printed porous prototypes in bone tissue engineering,” Ceramics International, vol. 41, no. 7, pp. 8320-8330, 2015. [15] G. Gao et al., ”Improved properties of bone and cartilage tissue from 3D inkjet-bioprinted human mesenchymal stem cells by simultaneous deposition and photocrosslinking in PEG-GelMA,” Biotechnology Letters, vol. 37, no. 11, pp. 2349-2355, 2015. [16] P. M. P. C. Gunathilake et al., ”Computerized 3D Modeling for Rapid Artificial Bone Substitute Manufacturing,” International Journal of Computer Applications, vol. 119, pp. 1-5, 2015. [17] M. Heller et al., ”Materials and scaffolds in medical 3D printing and bioprinting in the context of bone regeneration,” International Journal of Computerized Dentistry, vol. 19, no. 4, pp. 301, 2016. [18] K. R. Hixon et al., ”Cryogel scaffolds from patient-specific 3D-printed molds for personalized tissue-engineered bone regeneration in pediatric cleft-craniofacial defects,” Journal of Biomaterials Applications, pp. 885328217734824, 2017. [19] J. B. Hochman et al., ”Generation of a 3D printed temporal bone model with internal fidelity and validation of the mechanical construct,” Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery, vol. 150, no. 3, pp. 448, 2014. [20] A. E. Jakus et al., ”3D-Printing Porosity: A New Approach to Creating Elevated Porosity Materials and Structures,” Acta Biomaterialia, vol. 72, 2018. [21] A. E. Jakus, A. L. Rutz, and R. N. Shah, ”Advancing the field of 3D biomaterial printing,” Biomedical Materials, vol. 11, no. 1, pp. 014102, 2016. [22] S. H. Jariwala et al., ”3D Printing of Personalized Artificial Bone Scaffolds,” 3d Printing Additive Manufacturing, vol. 2, no. 2, pp. 56, 2015. [23] V. D. S. Jf et al., ”Three-Dimensional Nanoprinting via Direct Delivery,” Journal of Physical Chemistry B, 2018. [24] Y. P. Ju et al., ”3D printing technology to control BMP-2 and VEGF delivery spatially and temporally to promote large-volume bone regeneration,” Journal of Materials Chemistry B, vol. 3, no. 27, pp. 5415-5425, 2015. [25] V. S. Komlev et al., ”3D Printing of Octacalcium Phosphate Bone Substitutes,” Frontiers in Bioengineering Biotechnology, vol. 3, pp. 81, 2015. [26] S. Limmahakhun et al., ”3D-printed cellular structures for bone biomimetic implants,” Additive Manufacturing, vol. 15, pp. 93-101, 2017. [27] M. Liu, S. U. Han, and S. H. Lee, ”Tracking-based 3D human skeleton extraction from stereo video camera toward an on-site safety and ergonomic analysis,” Construction Innovation, vol. 16, no. 3, pp. 348-367, 2016. [28] M. Lu et al., ”Uncemented three-dimensional-printed prosthetic reconstruction for massive bone defects of the proximal tibia,” World Journal of Surgical Oncology, vol. 16, no. 1, pp. 47, 2018. [29] R. F. Macbarb et al., ”Fortifying the Bone-Implant Interface Part 2: An In Vivo Evaluation of 3D-Printed and TPS-Coated Triangular Implants,” International Journal of Spine Surgery, vol. 11, no. 3, pp. 16, 2017. [30] G. Montalbano et al., ”Type I Collagen and Strontium-Containing Mesoporous Glass Particles as Hybrid Material for 3D Printing of Bone-Like Materials,” Materials, vol. 11, no. 5, 2018. [31] S. E. Mowry et al., ”A Novel Temporal Bone Simulation Model Using 3D Printing Techniques,” Otology Neurotology, vol. 36, no. 9, pp. 1562-1565, 2015. [32] X. Ning et al., ”3D artificial bones for bone repair prepared by computed tomography-guided fused deposition modeling for bone repair,” Acs Appl Mater Interfaces, vol. 6, no. 17, pp. 14952-14963, 2014. [33] A. Palmquist et al., ”A technique for evaluating bone ingrowth into 3D printed, porous Ti6Al4V implants accurately using X-ray micro-computed tomography and histomorphometry,” Micron, vol. 94, pp. 1, 2016. [34] L. Peng, and S. Todorovic, "Modeling human-skeleton motion patterns using conditional deep Boltzmann machine." pp. 1845-1850. [35] P. E. Petrochenko et al., ”Laser 3D Printing with Sub-Microscale Resolution of Porous Elastomeric Scaffolds for Supporting Human Bone Stem Cells,” Advanced Healthcare Materials, vol. 4, no. 5, pp. 739-747, 2015. [36] M. W. Sa et al., ”Fabrication and evaluation of 3D printed BCP scaffolds reinforced with ZrO2 for bone tissue applications,” Biotechnology Bioengineering, 2017. [37] E. Sachs, M. Cima, and J. Cornie, ”Three-Dimensional Printing: Rapid Tooling and Prototypes Directly from a CAD Model,” CIRP Annals - Manufacturing Technology, vol. 39, no. 1, pp. 201-204, 1990. [38] H. Saijo et al., ”Maxillofacial reconstruction using custom-made artificial bones fabricated by inkjet printing technology,” Journal of Artificial Organs, vol. 12, no. 3, pp. 200-205, 2009. [39] J. L. Sang et al., ”A novel mussel-inspired 3D printed-scaffolds immobilized with bone forming peptide-1 for bone tissue engineering applications: Preparation, characterization and evaluation of its properties,” Macromolecular Research, vol. 24, no. 4, pp. 305-308, 2016. [40] H. Shao et al., ”Bone regeneration in 3D printing bioactive ceramic scaffolds with improved tissue/material interface pore architecture in thin-wall bone defect,” Biofabrication, vol. 9, no. 2, pp. 025003, 2017. [41] K. E. Smith et al., ”Use of 3D Printed Bone Plate in Novel Technique to Surgically Correct Hallux Valgus Deformities,” Techniques in Orthopaedics, vol. 31, no. 3, pp. 181, 2016. [42] A. P. Su et al., ”Fabrication of 3D Printed PCL/PEG Polyblend Scaffold Using Rapid Prototyping System for Bone Tissue Engineering Application,” Journal of Bionic Engineering, vol. 15, no. 3, pp. 435-442, 2018. [43] M. Tavakoli, J. Lourenco, and A. T. D. Almeida, "3D printed endoskeleton with a soft skin for upper-limb body actuated prosthesis." pp. 1-5. [44] M. Tavakoli et al., ”Anthropomorphic finger for grasping applications: 3D printed endoskeleton in a soft skin,” International Journal of Advanced Manufacturing Technology, vol. 91, no. 5-8, pp. 1-14, 2017. [45] E. M. Taylor, and M. L. Iorio, ”Surgeon-Based 3D Printing for Microvascular Bone Flaps,” Journal of Reconstructive Microsurgery, vol. 33, no. 06, pp. 441-445, 2017. [46] R. Trombetta et al., ”3D Printing of Calcium Phosphate Ceramics for Bone Tissue Engineering and Drug Delivery,” Annals of Biomedical Engineering, vol. 45, no. 1, pp. 1-22, 2017. [47] L. Wang et al., ”Mapping porous microstructures to yield desired mechanical properties for application in 3D printed bone scaffolds and orthopaedic implants,” Materials Design, 2017. [48] W. P. Xu, W. Li, and L. G. Liu, ”Skeleton-Sectional Structural Analysis for 3D Printing,” Journal of Computer Science Technology, vol. 31, no. 3, pp. 439-449, 2016. [49] C. Yang et al., ”3D-Printed Bioactive Ca3SiO5 Bone Cement Scaffolds with Nano Surface Structure for Bone Regeneration,” Acs Applied Materials Interfaces, vol. 9, no. 7, pp. 5757, 2017. [50] X. Zhai et al., ”3D-printed high strength bioactive supramolecular polymer/clay nanocomposite hydrogel scaffold for bone regeneration,” Acs Biomaterials Science Engineering, vol. 3, no. 6, 2017. [51] N. Zhang, ”Study on the Movement Posture and Sports Characteristics Based on the 3D Reconstruction of Human Body,” Journal of Computational Theoretical Nanoscience, vol. 13, no. 12, pp. 10342-10346, 2016. [52] X. Zhou et al., ”3D bioprinted graphene oxide-incorporated matrix for promoting chondrogenic differentiation of human bone marrow mesenchymal stem cells,” Carbon, vol. 116, pp. 615-624, 2017. [53] 刘凤珍 et al., ”3D打印技术在医学领域中的应用研究进展,” 中国材料进展, vol. 43, no. 5, pp. 381-385, 2016. [54] 杨文静 et al., ”基于3D打印的CPC人工骨支架流道结构设计,” 机械设计与制造, no. 8, pp. 30-33, 2015. [55] 郑立 et al., ”植入性下肢骨植入体周围骨应力分布的三维有限元分析,” 生物医学工程学杂志, vol. 24, no. 3, pp. 554-557, 2007.

3. 毕业设计(论文)进程安排

2019年1月1号前:完成毕业论文提纲 2019年1月5号:下达外文翻译任务 2019年1月18号前:完成外文翻译、文献综述和开题报告

剩余内容已隐藏,您需要先支付 10元 才能查看该篇文章全部内容!立即支付

企业微信

Copyright © 2010-2022 毕业论文网 站点地图