登录

  • 登录
  • 忘记密码?点击找回

注册

  • 获取手机验证码 60
  • 注册

找回密码

  • 获取手机验证码60
  • 找回
毕业论文网 > 毕业论文 > 材料类 > 材料成型及控制工程 > 正文

电磁压制Ag-Cu-Ge系钎料对不同母材焊接性能的评估分析毕业论文

 2021-03-11 23:57:31  

摘 要

无镉中温银基钎料因熔点适中,润湿铺展性能、焊缝力学性能优良,且不含有毒元素等优点,目前被大量运用在微电子封装领域。但镉元素的禁用也给钎料的加工制备带来了难题,因此如何提出一种行之有效的中温银基钎料的加工制备工艺成为了钎焊领域的热点课题。我国熔点在500-650℃的生产用钎料种类缺乏。据有关研究表明,Ag-Cu-Ge系合金钎料(熔点500~600℃)在微电子封装领域有广阔的前景。但因为该类钎料含有锗相等一些脆性相,所以使其塑性加工性能无法满足要求,难以成形为薄片状。

针对于Ag-Cu-Ge钎料薄片的成形加工难点,本课题采用电磁压制结合粉末冶金烧结工艺制备该类钎料薄片。将按成分配比称量后的混合粉末通过真空干燥以及球磨混合后,在不同的压制电压下进行电磁压制。通过分析其组织性能,寻求最优的电磁压制工艺参数。研究表明,在起初压制阶段,电压越高所加工压坯的致密度越高,2800V电压下达最大值。当电压再增加时,由于锗粉较脆压坯内部发生应力集中,分层破裂等现象导致其致密度下降。实验根据粉末配比和性质确定了烧结温度为400℃、烧结时间为30min的烧结工艺。

最后对性能优良钎料薄片进行焊接性能的分析,结果表明在600℃的焊接温度下钎料能发挥出最优性能,焊缝组织均匀。由于在对镍板的焊接中能形成竹笋状生长的过渡层,所以该合金钎料在镍板焊接中与母材表现出更优的结合性能。综合本课题研究内容表明,电磁压制方法不仅解决了该类合金钎料的成形难题,也为我国中温银基钎料的发展提供了理论指导。

关键词:Ag-Cu-Ge系合金钎料;电磁压制;烧结工艺;钎焊性能

Abstract

The cadmium-free silver-based solder with medium temperature is widely used in the field of microelectronics packaging because of its moderate melting point, excellent wetting and spreading performance and weld mechanical properties and no toxic elements. However, the disabling of cadmium also causes a difficult problem in the preparation of solder. Therefore, how to put forward an effective way of medium-temperature silver-based solder processing technology has become a hot topic in the field of brazing. China lacks solder which the melting point is in 500-650 ℃.According to related researches, Ag-Cu-Ge alloy solder (melting point 500 ~ 600 ℃) has broad prospects in the field of microelectronics packaging. However, because the solder contains some germanium phase of the brittle phase, so that the plastic processing performance can not meet the requirements, it is difficult to shape into a sheet.

In order to solve the forming difficulties, this topic adopts a method of electromagnetic compaction combined with powder metallurgy sintering process to prepare Ag-25Cu-24Ge alloy sheet. The mixed powders after weighing according to the ingredients were mixed by vacuum drying and ball milling, and used to electromagnetic pressing at different pressing voltages. After that,we analysis its organizational properties so that we can find the optimal process parameters. The results show that the density of the compact increases with the increase of the voltage in the initial suppression stage, and reaches the maximum value at 2800V. When the voltage increases, due to the germanium powder is brittle, the pressure inside the compact, stratified rupture and other phenomena lead to its density decreased. The sintering process with sintering temperature of 400 ℃ and sintering time of 30 min was determined according to the ratio and properties of powder.

Finally, the welding performance of the excellent solder sheet is analyzed. The results show that the solder can exhibit the best performance and the weld structure evenly at the welding temperature of 600 ℃.Since the transition layer of bamboo shoots can be formed in the welding of the nickel plate, the alloy solder exhibits better bonding performance with the base metal during the welding of the nickel plate. The research results show that the electromagnetic pressing method not only solves the forming problem of the alloy solder, but also provides theoretical guidance for the development of medium temperature silver-based solder in China.

Key words: Ag-Cu-Ge alloy solder;electromagnetic powder compacting;sintering process;the performance of solder

目 录

中文摘要 I

Abstract II

目 录 i

第1章 绪论 1

1.1引言 1

1.2无镉中温银基钎料的研究现状 1

1.3电磁成形技术简介 3

1.4本课题研究意义及主要内容 4

第2章 相关实验设备、原料准备及技术路线 6

2.1实验设备 6

2.1.1电磁压制实验设备 6

2.1.2烧结实验设备 6

2.2实验用Ag-Cu-Ge钎料的原料准备 7

2.2.1粉末原料的选定 7

2.2.2原料的称取及混合 8

2.3实验技术路线 8

2.4本章小结 8

第3章 电磁压制实验与结果分析 9

3.1引言 9

3.2电磁压制相关实验辅助设备及工装 9

3.2.1电磁压制实验线圈设计 9

3.2.2电磁压制实验驱动片设计 10

3.2.3电磁压制实验模具设计 10

3.2.4电磁压制实验工装 12

3.3电磁压制实验过程 12

3.3.1电磁压制实验操作步骤 12

3.3.2电磁压制实验 13

3.3.3电磁压制实验结果与分析 13

3.4本章小结 15

第4章 烧结实验与结果分析 16

4.1引言 16

4.2烧结工艺参数选择 16

4.3烧结实验结果与分析 17

4.4本章小结 18

第5章 钎焊实验与结果分析 19

5.1引言 19

5.2钎焊实验 19

5.2.1钎焊实验材料准备 19

5.2.2钎焊实验方案路线 20

5.2.3钎焊实验过程 20

5.3钎焊实验结果与分析 21

5.4本章小结 25

第6章 总结与展望 26

6.1全文总结 26

6.2展望 27

参考文献 28

致谢 30

第1章 绪论

1.1引言

微电子产业已经成为当今世界不可轻易忽视的大产业,也越来越是我国国民经济的重要组成部分[1]。IT产业与微电子封装紧密相连,封装产业占全球微电子产业产值的比重不断增加,从2001年1.1%增长至2011年34.3%。在微电子封装领域,其互连工艺是核心内容,因其不需要母材熔化而实现焊接的优势,使钎焊成为互连技术普遍使用的方式[2-3]。钎焊之所以普遍运用于封装领域是因为其焊接温度低,焊接过程中接头的机械性能小,力学性能优良,对母材影响不大。当然,钎焊要有良好性能的接头离不开适当钎料的选用。所以,优质钎料的研究对于钎焊技术的发展甚至对于微电子封装产业都有关键性的作用。

对于不同的钎料,优缺点明显。锡铅钎料力学性能差、热疲劳和机械疲劳性能较差,随着如今微电子封装领域技术要求的提高,钎焊的性能也越来越引起重视和关注,对于含铅钎料重要的是铅是有毒有害物质,长期大量使用会破坏生态。所以,锡铅钎料对于微电子封装已越来越被限制使用[4]。Sn-Zn,Sn-Cu,Au合金系和Ag合金系都是典型的无铅钎料。然而,综合润湿性、机械性能等因素,这些无铅钎料都并未大量投入使用。银基钎料在这些方面却显现出更大的优势。对于传统银基钎料,若想改善其润湿性等性能则必须加入镉元素。但是,镉属于有害元素。早在2006年,欧盟就已明令禁止镉在电子工业等领域的使用[5]。所以如今禁用镉等有害元素,只有通过改变成分配比和添加其他合金元素来提升优化焊接性能。而另一方面,使其塑性加工性能变差,难以用常规的方法加工成薄片。

您需要先支付 80元 才能查看全部内容!立即支付

企业微信

Copyright © 2010-2022 毕业论文网 站点地图