登录

  • 登录
  • 忘记密码?点击找回

注册

  • 获取手机验证码 60
  • 注册

找回密码

  • 获取手机验证码60
  • 找回
毕业论文网 > 外文翻译 > 材料类 > 材料成型及控制工程 > 正文

新型高强度钢STRENX 1100 MC的激光焊接外文翻译资料

 2022-01-06 21:58:32  

·Arch. Metall. Mater. 62 (2017), 3, 1651-1657

DOI: 10.1515/amm-2017-0253

A. KURC-LISIECKA*#J. PIWNIK**, A. LISIECKI***

LASER WELDING OF NEW GRADE OF ADVANCED HIGH STRENGTH STEEL STRENX 1100 MC

The article presents results of investigations on autogenous laser welding of new grade STRENX 1100 MC steel. The modern Disk laser was applied for of 5.0 mm thick butt joints welding. The influence of laser welding parameters, mainly the energy input of laser welding on the penetration shape, weld quality, structure and mechanical performance was investigated. It was found that the investigated steel has surprisingly low carbon equivalent CET just 0.328, and also relatively high temperature of martensitic transformation Ms at 430.6°C. Despite very rapid cooling times t8/5 in a range from 0.6 to 1.3 s, thus rapid solidification there was no tendency to cracking of weld metal or HAZ. Significant drop of microhardness in the HAZ resulted in a decrease of tensile strength of joints, compared to the base metal. Impact toughness of test joints was at only 50divide;60% of the base metal.

Keywords: laser welding, disk laser, advanced high strength steel, fine-grain steel, butt joint

Introduction

Modern structural steels are widely used in the manufacture of building structures such as bridges, towers, industrial buildings such production halls, warehouse hall, and also in manufacture of vehicles, particularly heavy vehicles such as trucks, trailers, semi-trailers, rail vehicles such wagons and tramcars, and also other utility vehicles and machines as cranes, loaders, excavators, etc. [1-5]. The reason for this is the ease of shaping, forming and joining of steel blanks [6-9].

In accordance with the global trend to reduce carbon di- oxide emissions, reduce energy consumption, the steel industry strives to improve strength and reliability of new grades of steels. Thanks to the higher strength of steel products it is pos- sible to reduce structures or vehicles weight while increasing its capacity [10-13].

The current level of materials science, engineering, and production engineering allows the production of super-strength steels with the yield point up to 1300 MPa. Due to the high flexibility and a number of advantages which has a fusion weld- ing, this technology is widely used in the manufacture of steel structures [2,14-16]. Contemporary experience shows that the production of steel with excellent functional properties is not dif- ficult. Currently, the real challenge is the technology of welding such high strength steels [2,17-19].

Still the weakest link in the structure made of high strength steel is the welded joint. Conventional welding methods such as manual metal arc welding (MMAW), gas metal arc welding (GMAW) or submerged arc welding (SMAW) donrsquo;t provide

satisfactory joint properties, especially in a case of steel grades with the yield point beyond 900 MPa. Therefore, steel manufac- turers are constantly looking for new solutions in the production process, the methods of forming properties and improve the weldability of modern high strength steels [1-3,20-23].

As a result of the research and development carried out by the biggest steel making companies new steel grades are introduced to the market [1,24]. An example is the steel grade (trade name) DOMEX 960 introduced by the SSAB company in 2012. The new grade of steel was compared and classified by the manufacturer to the thermomechanically rolled fine-grained microalloyed steels, despite the fact that the standard EN 10149-2 covers steels with the yield point up to 700 MPa, e.g. S700MC. On the other hand the steel grades of the well-known trade name WELDOX were assigned to the standard EN 10025-6 for low alloy quenched and tempered steels. However, modern steels currently manufactured greater than the standards both in terms of strength and sophisticated chemical composition [25].

However, modern grades of steel that are nowadays manufactured exceed the standards both in terms of strength and chemical composition. Additionally it is difficult to classify them in terms of the manufacturing process. An example is the latest grade of steel STRENX 1100 MC, which was introduced to the world market in the spring of 2015. According to the new phi- losophy of SSAB Company the new steel grade STRENX covers the early grades of steel DOMEX, WELDOX and OPTIM. This example demonstrates that this new steel grade STRENX canrsquo;t be classified by just one standard, in general. The new grade of steel STRENX 1100 MC was originally produced as DOMEX

* WSB UNIVERSITY OF CHORZOacute;W, FACULTY OF WSB UNIVERSITY IN POZNAŃ, DEPARTMENT OF MANAGEMENT ENGINEERING, 29 SPORTOWA STR., 42-506 CHORZOacute;W, POLAND

** BIALYSTOK UNIVERSITY OF TECHNOLOGY, MECHANICAL FACULTY, 45C WIEJSKA STR., 16-351 BIAŁYSTOK, POLAND

*** SILESIAN UNIVERSITY OF TECHNOLOGY, FACULTY OF MECHANICAL ENGINEERING, WELDING DEPARTMENT, 18A KONARSKIEGO STR.,41-100 GLIWICE, POLAND

# Corresponding author: a.kurc@wp.pl

1100 and classified by the manufacturer to a thermomechanically rolled steel even though properties of the steel are at the level of the quenched and tempered steels. However, the manufacturer does not disclose the details of the manufacturing process of these steels. In general the new high strength, microalloyed and fine-grained steels are manufactured by means of a complex technology of Thermo-Mechanical Control Processing (TMCP), Fig. 1 [6,26-28].

conventional arc welding has a negative impact on the properties of welded joints [1-6].

However, it should be emphasized that so far there is no information on welding of the new grade STRENX 1100 MC steel in world literature, because the steel was introduced to the world market in the spring of 2015.

100

Melting<!--

全文共28376字,剩余内容已隐藏,支付完成后下载完整资料


·Arch.Metall.Mater.62(2017),3,1651-1657

DOI:10.1515/2017-0253

a.kurc-lisiecka*#.J.piwnik**,a.lisiecki***

新型高强度钢STRENX 1100 MC的激光焊接

摘要:本文介绍了新型STRENX 1100 MC钢的自动激光焊接研究结果。现代圆盘激光器适用于5.0毫米厚的对接焊接。本文研究了激光焊接参数(主要是激光焊接的能量输入)对穿透形状、焊接质量、结构和力学性能的影响。结果表明,所研究钢的碳当量仅为0.328,并且马氏体相变温度在430.6℃时比较高。快速冷却时间t8/5在0.6至1.3秒的范围内,但是快速凝固时并没有出现焊接金属或HAZ开裂的趋势。热影响区显微硬度的显著下降导致接头的抗拉强度比母材降低很多。试验接头的冲击韧性仅为母材的50%~60%。

键词:激光焊接、盘式激光器、先进高强度钢、细晶粒钢、对接

1.介绍

现代结构钢广泛应用于制造桥梁、塔、生产车间以及仓库大厅等工业建筑物和车辆制造。车辆制造主要是卡车、拖车、半挂车、铁路车辆、货车和有轨电车以及其他多用途的车辆和机器,如起重机、装载机、挖掘机等[1-5]。现代结构钢应用广泛的主要原因是钢坯的成形和连接较为容易[6-9]。

在减少二氧化碳排放、降低能耗的全球趋势下,钢铁行业正在努力提高新等级钢的强度和可靠性。因为钢材的强度更高,所以可在提高其性能的同时减轻结构或车辆重量[10-13]。

目前的材料科学、工程和工艺设计水平可以生产屈服点高达1300 MPa的高强度钢。由于其有较高的可塑性且可以进行熔焊等诸多优点,该技术广泛用于钢结构的制造[2,14-16]。目前来看,生产具有优异功能特性的钢并不困难,真正的挑战是掌握这种高强度钢的焊接技术[2,17-19]。

因为高强度钢制成的结构中最薄弱的环节仍然是焊接接头。用常规焊接方法,如手工金属电弧焊(MMAW)、气体保护金属电弧焊(GMAW)或埋弧焊(SMAW)等焊接方法得到的焊接接头的性能并不能达到要求,特别是屈服强度超过900 MPa的钢种。因此,

钢铁制造商不断在生产过程中寻找新的解决方案来提高现代高强度钢的成形性能和可焊性。[1-3,20-23]。

随着大型炼钢公司的研究和开发,新钢种被引入市场[1,24]。一个例子是SSAB公司在2012年推出的钢级(商品名)DOMEX 960。尽管标准EN 10149-2涵盖了屈服强度高达700 MPa的钢,但是制造商还是将新的钢种与热机械轧制的细粒微合金钢进行了比较和分类,例如S700MC。另一方面,著名商标WELDOX的钢种被分配到标准EN 10025-6中,被用作低合金调质钢。然而,现代钢在强度和复杂化学成分方面均高于一般标准[25]。

然而,现代钢种在强度和化学成分方面都超过了一般标准。另外,很难根据制造的过程对它们进行分类。例如于2015年春季推向世界市场的最新等级的钢STRENX 1100 MC。根据SSAB公司的新理念,新钢级STRENX涵盖早期等级的钢DOMEX、WELDOX和OPTIM。这个例子表明,一般来说,这种新钢级STRENX不能仅仅按照一种标准进行分类。新型钢STRENX 1100 MC最初是作为DOMEX 1100生产的并且被制造商分类为热机械轧制钢,即使钢的性能处于淬火和回火钢的水平。但是,制造商没有公开这些钢的制造过程的细节。一般的高强度微合金钢和细晶钢都是采用一种复杂的热机械控制加工技术(TMCP)来制造的。图1[6,26-28]。

*wsbchorzoacute;w大学,波兹南大学,管理工程系,29 sportowa str。,42-506chorzoacute;w,波兰

**bialystok技术大学,机械学院,45c wiejska str。,16-351białystok,波兰

***西里西亚技术大学,机械工程学院,焊接系,18a konarskiego str。,41-100 gliwice,波兰

#通讯作者:a.kurc@wp.pl

该钢材在2015年春季才进入世界市场。

100

融化

80

吸收率,%

60

40

20

0

0 10

102

103

10 4

105

10 6

10 7

10 8

图1.微合金钢(TMCP)的热机械轧制示意图[6]

这种复杂的TMCP工艺提供了由非常细的铁素体晶粒和贝氏体/马氏体组成的两相微观结构。现代高强度微合金钢碳当量较低,因此可焊接性良好并且不易开裂[2,6,29-33]。

然而,良好的可焊性不仅能够使接头不会产生裂缝,还能够提供与母材(BM)同等水平的强度和功能特性的接头[6,8,30,34]。

通常,选择合适的焊接技术的唯一标准是确保接头具有BM水平的静态拉伸强度,有时另外考虑工艺弯曲试验或冲击韧性。在实践中,焊接接头的疲劳试验完全被忽略[31]。可焊性通常被理解为冶金可焊性,这取决于化学成分、焊接材料的结构和附加材料的类型。[2,6,24,31]。

然而,可焊性的含义要宽泛得多,其包括结构和工艺可焊性。结构焊接性取决于接头的类型、焊接部件的厚度、结构的尺寸、刚度等。而工艺焊接性取决于焊接方法的类型及其特性,尤其是功率密度。

以前在细晶粒微合金钢焊接领域的研究表明,过量的热量输入过程中传统的电弧焊对焊接接头的性能有负面影响[1-6]。

然而,应该强调的是,到目前为止,世界文献中没

有关于新牌号STRENX 1100 MC钢的焊接的信息,因为功率密度,W/cm2

图2.激光辐射吸收与激光束功率密度之间的关系[5]

激光束焊接(LBW)作为一种先进的焊接技术在世界工业中占有越来越重要的地位。激光焊接的机理和条件与传统的电弧焊接工艺完全不同。此外,激光束加热的强度、表面熔化及冷却机理、凝固、穿透深度、熔合区的形状、宽/深比、熔融金属的体积都取决于波长、功率密度等主要的激光束参数(激光类型),图2。

因此,笔者对最近引入世界工业的新钢级STRENX 1100 MC的自动激光焊接技术进行了研究。

2.材料和实验程序

目前市售的5.0mm厚钢级STRENX 1100 MC用于激光焊接试验。然而,WIELTON公司直接从瑞典钢铁厂提供钢板作为实验板(熔化)。

新型钢STRENX 1100 MC被制造商归类为热机轧制细粒微合金钢。但是,这种钢的机械性能远远超出了本标准规定的热机械轧制钢(EN 10149-2)。另外,制造商未公开新牌号钢的制造过程的细节。研究得到钢的化学成分为0.16%C,0.30%Si,1.3%Mn,0.018%Al,Nb Ti V之和为0.18%wt.%和平衡Fe,其最小屈服强度为1100MPa,对于板厚ge;3mm,拉伸强度为1200-

1460MPa,伸长率A5最小6%。用于焊接试验的试样为5.0mm厚的钢板,用激光切割成尺寸为100.0times;100.0mm的试样。在焊接试验之前,焊接的表面和边缘进行喷砂处理并用丙酮清洁。焊接试验是通过现代固态Yb:YAG盘式激光器以连续波(cw)模式发射,波长为1.03mu;m,最大输出功率为3.3kW。由玻璃纤维从发生器传递到焊接头的激光束聚焦到直径为200mu;m。珠光板焊缝的最大输出激光功率为3.3kW。设置不同焊接速度,具体数据如表2所示。

表1

YbYAG TruDisk 3302激光器和聚焦光学器件的技术数据,图3

参数

波长,nm

1030

最大输出功率W

3300

激光束发散,mm·mrad

lt;8.0

纤维芯直径,mu;m

200.0

准直器焦距,mm

200.0

聚焦镜头焦距,mm

200.0

束斑直径,mu;m

200.0

纤维长度,m

20.0

图3.利用Yb:YAG TruDisk 3302激光器(格利维采西里西亚大学焊接部)对厚度为5.0 mm,长度为500 mm的STRENX 1100 MC钢板对接的自动激光焊接图)

进行板上焊接试验,模拟了对接接头的自动激光焊接过程,并研究了焊接参数对穿透深度、熔合区(FZ)形状和热影响区尺寸的影响(HAZ)。基于钢板堆焊试验,选择了对接焊接的最佳参数。对接接头是单面激光焊接,最大激光功率为3.3kW,焊接速度为1.5(接头A)和1.0m/min(接头B)。将焊接的试样安装在一个特殊的夹紧装置中,以防止变形。该激光束相互作用区域,熔池由通过四个直径为8.0mm的圆柱形喷嘴的氩气流保护,并且与接头表面成45°夹角。保

表2

使用Disk激光TRUMPF TruDisk 3302,图3中的STRENX 1100 MC钢5.0 mm厚板的珠板激光焊接参数

珠号

焊接速度(m/min)

激光功率(W)

能量输入(J/mm)

备注

1

2

3.3

99

LP,UF,S

2

1

3.3

198

S,ERR,HF,FP

3

1.5

3.3

132

HF,ERR,SP,FP

4

0.5

3.3

396

uf,fp,sp,hf,err

其他焊接参数;标称束斑直径:200.0 mm,屏蔽喷嘴直径:8.0 mm,保护气体:Ar(99.999%),顶部表面(焊接面)的气体进料速率:15.0 l/min,焊缝质量评估:LP-缺乏穿透FP-完全穿透,UF-咬合面的底切,S-飞溅,HF-空心面,ERR-过度根部加固,ER-过度面部强化,SP-单孔

护气体输送系统和喷嘴与激光焊接头集成在一起。氩气流量保持在15升/分钟。激光束聚焦在待焊接样品的表面。在聚焦光学系统的应用配置下激光束直径为200mu;m。当激光焊接测试完成后,首先根据焊接质量控制程序进行目视检查(VT),接下来进行金相学和机械检查,通过光学显微镜(OM)、扫描电子显微镜(SEM)进行结构检查。通过辉光放电光谱仪(GDS)测定碱金属的化学组成。之后进行力学实验,力学实验包括工艺弯曲试验,静态拉伸测试和Charpy-V型缺口测试以及维氏显微硬度测量。测量和分析的结果如图4-11和表2-4所示。

3.结果和讨论

钢板激光焊接的初始试验结果表明,厚度为5.0mm的STRENX 1100 MC钢板完全穿透所需的能量至少为100 J/mm,最大输出功率为3.3kW。盘式激光器TRUMPF TruDisk 3302的焊接速度2.0米/分钟,如图4a。

激光点焊在最小能量输入下产生的焊缝宽度仅为1.45mm,根宽为0~0.25mm。仔细检查焊根可以发现焊缝根部局部未能焊透(穿透),表2。由最小能量输入情况下产生的板上堆焊熔合区的形状(FZ)清楚地表明焊缝是在小孔焊接模式下产生的,且具有高功率密度激光束的特点。在这种情况下,FZ采用柱状配置,并且使深度/宽度的比率接近3.5。增加板上激光焊接的热输入,通过降低恒定激光功率下的焊接速度,增加单个焊缝的宽度,并增加热影响区(HAZ)的宽度,

a) b)

c) d)

图4.通过Disk laser TRUMPF TruDisk 3302在5.0mm厚的STRENX 1100 MC钢板上生产的板上焊缝的横截面上的宏观结构,表2;a)1号(99J/mm),b)2号(198J/mm),

全文共11130字,剩余内容已隐藏,支付完成后下载完整资料


资料编号:[1994]

您需要先支付 30元 才能查看全部内容!立即支付

企业微信

Copyright © 2010-2022 毕业论文网 站点地图