PtPd双金属立方纳米笼及其电化学性能研究开题报告
2020-02-10 22:33:23
1. 研究目的与意义(文献综述)
在过去的几十年里,全球范围内化石燃料的大量使用在极大的提升了人们的生活水准同时,也带来了日益严重的环境问题。
车辆排放的废气是城市空气污染的主要来源,面对环境污染的加重以及能源危机的加剧,降低对非可再生资源以及化学能源的使用已经迫在眉睫。
质子交换膜燃料电池( pemfcs )能够零排放的将化学能转化成电能,是化石能源材料绝佳的替代物。
2. 研究的基本内容与方案
材料制备:以na2pdcl4为原料,ki、pvp为表面活性剂,dmf为还原剂,制备立方pd纳米晶体;以合成的立方pd为晶种,加入h2ptcl6·6h2o,以ki、pvp为表面活性剂,dmf作为还原剂,制备具有核壳结构的立方pd@pt纳米合金;将立方pd@pt纳米合金放入浓hno3中采用去合金法除去pd核,得到具有立方结构的pt纳米笼。
材料表征:对制备成的pt纳米笼进行结构表征和电化学性能测试,通过x射线衍射(xrd)、透射电子显微镜(tem)、扫描电子显微镜(sem)等表征手段对其形貌结构及元素构成进行了分析,并采用循环伏安(cv)、甲醇氧化实验(mor)等电化学测试技术对其电化学性能进行了系统评估。
2.2. 研究目标1.掌握形貌可控的pt基金属纳米粒子的制备方法;2.掌握pt-pd纳米笼表面结构的调控及其性能的分析方法。
3. 研究计划与安排
第1-4周:查阅相关文献资料,完成英文翻译。
明确研究内容,了解研究所需原料、仪器和设备。
确定技术方案,并完成开题报告。
4. 参考文献(12篇以上)
[1]. C. Cui, L. Gan, M. Heggen, et al. Compositional segregation in shaped Pt alloy nanoparticles and their structural behaviour during electrocatalysis[J]. Nature Materials, 2013, 12, 765-771.[2]. 陈胜,铂基纳米晶的可控合成及其电化学催化性能研究[J]. 中国科学技术大学, 2017[3]. D. S. He, D. He, J. Wang, et al. Ultrathin icosahedral Pt- enriched nanocage with excellent oxygen reduction reaction activity[J]. Journal of the American Society, 2016, 138, 1494-1497.[4]. X. Wang, L. Figueroa-Cosme, X Yang, et al. Pt-based icosahedral nanocages: using a combination of {111} facets, twin defects, and ultrathin walls to greatly enhance their activity toward oxygen reduction[J]. Nano Letters, 2016, 16, 1467-1471.[5]. H. Gao, S. Yang, C. Shen, et al. Synthesis of cubic and spherical Pd nanoparticles on graphene and their electrocatalytic performance in the oxidation of formic acid[J]. Nanoscale, 2014, 6, 13154-13162[6]. Y. Liang, M. G. Zhu, J. Ma, et al. Highly dispersed carbon-supported Pd nanoparticles catalyst synthesized by novel precipitation-reduction method for formic acid electrooxidation[J]. Electrochimica Acta, 2011, 56, 4696-4702.[7]. M. Jiang, B. Lim, J Tao, et al. Epitaxial overgrowth of platinum on palladium nanocrystals[J]. Nanoscale, 2010, 2, 2406-2411[8]. R. Long, K. Mao, X. Ye, et al. Surface facet of palladium nanocrystals: A key parameter to the activation of molecular oxygen for organic catalysis and cancer treatment[J]. Journal of the American Society, 2013, 135, 3200-3207.[9]. G. Collins, M. Schmidt, et al. The origin of shape sensitivity in palladium-catalyzed suzuki–miyaura cross coupling reactions[J]. Angewandte Chemie, 2014, 126, 4226-4229.[10]. S. K. Kim, C. Kim, J. H. Lee, et al. Performance of shape- controlled Pd nanoparticles in the selective hydrogenation of acetylene[J]. Journal of Catalysis 306 (2013) 146–154.[11]. S. D. Yang, C. M. Shen, Y. Y. Liang, et al. Graphene nanosheets-polypyrrole hybrid material as a highly active catalyst support for formic acid electro-oxidation[J]. Nanoscale, 2011, 3, 3277-3284.[12]. N. Arjona, M. Guerra-Balcázar, L. Ortiz-Frade, et al. Electrocatalytic activity of well-defined and homogeneous cubic-shaped Pd nanoparticles[J]. Journal of Materials A, 2013, 1, 15524-15529.[13]. C. Xue, J. E. Millstone, S. Li, et al. Plasmon-driven synthesis of triangular core-shell nanoprisms from gold seeds[J]. Angewandte Chemie, 2007, 46, 8436-8439.[14]. G. Collins, M. Blomker, M. Osiak, et al. Three-dimensionally ordered hierarchically porous tin dioxide inverse opals and immobilization of palladium nanoparticles for catalytic applications[J]. Chemistry of Materials, 2013, 25, 4312-4320.[15]. M. Che, C.O. Bennett. The influence of particle size on the catalytic properties of supported metals[J]. Advances in Catalysis, 1989, 36, 55-172.[16]. X. Huang, Z. Zhao, L. Cao, et al. High-performance transition metal-doped Pt3Ni octahedra for oxygen reduction reaction[J]. Science, 2015, 348, 1230-1234.