Mn4 ,Cu2 掺杂对CeO2/TiO2低温脱硝性能的优化任务书
2020-05-25 23:42:46
1. 毕业设计(论文)的内容和要求
主要内容: 水泥工业是第二大nox排放固定源,现有sncr脱硝技术效率低,氨逃逸严峻,运行费用高,难以满足日益严格的水泥工业nox限排要求,急需一种低成本低 温高效的scr脱硝技术。
本课题在自主研发的环境友好型ceo2/tio2催化剂的基础上,通过mn4 ,cu2 掺杂改性,以达到优化催化剂的低温脱硝性能。
论文主要考察mn4 和cu2 对低温nh3-scr脱硝性能的优化,并结合xrd、nh3-tpd和h2-tpr等表征探讨mn4 和cu2 离子掺杂对ceo2/tio2催化剂低温脱硝性能的影响规律。
2. 参考文献
[1] G. K. Reddy, J. He, S. W. Thiel, et al. J. Phys. Chem. C. 119 (2015) 8634. [2] Y. Wang, B. Shen, C. He, et al. Environ. Sci. Technol. 49 (2015) 9355. [3] H. Okamoto. J. Phase Equilib. Diff. 36 (2015) 390. [4] S. Gil, J. M. Garcia-Vargas, L. F. Liotta, et al. CATALYSTS. 5 (2015) 671. [5] D. W. Kwon, K. B. Nam, S. C. Hong. Appl. Catal. A-Gen. 497 (2015) 160. [6] F. Cao, S. Su, J. Xiang, et al. Fuel. 139 (2015) 232. [7] T. Boningari, D. K. Pappas, P. R. Ettireddy, et al. Ind. Eng. Chem. Res. 54 (2015) 2261. [8] D. W. Kwon, K. B. Nam, S. C. Hong. Appl. Catal. A-Gen. 497 (2015) 160. [9] L. Qiu, J. Meng, D. Pang, et al. Catal. Lett. 145 (2015) 1500. [10] F. Cao, J. Xiang, S. Su, et al. Fuel Process. Technol. 135 (2015) 66. [11] Z. Liu, J. Zhu, J. Li, et al. ACS Appl. Mater. Inter. 6 (2014) 14500. [12] L. Jiang, X. Liu, H. Tu, et al. Rare Metal Mat. Eng. 43 (2014) 2998. [13] F. J. Liu, K. Kitayama, S. Suda. Vacuum. 47 (1996) 903. [14] R. Jin, Y. Liu, Y. Wang, et al. Appl. Catal. B-Environ. 148 (2014) 582. [15] M. Stanciulescu, P. Bulsink, G. Caravaggio, et al. Appl. Surf. Sci. 300 (2014) 201. [16] L. Li, Y. Diao, X. Liu. J. Rare Earth. 32 (2014) 409. [17] Z. Liu, J. Zhu, J. Li, et al. ACS Appl. Mater. Inter. 6 (2014) 14500. [18] A. Zhou, H. Mao, Z. Sheng, et al. Huan jing ke xue= Huanjing kexue / [bian ji, Zhongguo ke xue yuan huan jing ke xue wei yuan hui "Huan jing ke xue" bian ji wei yuan hui.]. 35 (2014) 4745. [19] N. V. Chukanov, G. Blass, I. V. Pekov, et al. Geol. Ore Deposit. 54 (2012) 647. [20] K. Zhuang, J. Qiu, B. Xu, et al. Acta Phys.-Chim. Sin. 28 (2012) 681. [21] Z. Wang, X. Li, W. Song, et al. Mater. Express. 1 (2011) 167. [22] B. Shen, T. Liu, N. Zhao, et al. J. Environ. Sci.-China. 22 (2010) 1447. [23] R. Jin, Y. Liu, Z. Wu, et al. Chemosphere. 78 (2010) 1160. [24] G. Carja, Y. Kameshima, K. Okada, et al. Appl. Catal. B-Environ. 73 (2007) 60. [25] W. Liu, Z. Tong, J. Luo. Acta Scientiae Circumstantiae. 26 (2006) 1240. [26] S. R. Yu, X. P. Zhang, Z. M. He, et al. J. Mater. Sci.-Mater. M. 15 (2004) 687. [27] J. M. Cadogan, H. S. Li, A. Margarian, et al. J. Appl. Phys. 76 (1994) 6138. [28] S. Yu, X. Zhang, Z. He, et al. Journal of Biomedical Engineering. 21 (2004) 102. [29] S. R. Yu, X. P. Zhang, Z. M. He, et al. Rare Metal Mat. Eng. 33 (2004) 723. [30] G. M. Zhu, L. X. Chen, Y. Q. Lei, et al. Acta Metall. Sin. 37 (2001) 61. [31] G. Q. Li, H. Suito. Metall. Mater. Trans. B. 28 (1997) 251. [32] G. Q. Li, H. Suito. Metall. Mater. Trans. B. 28 (1997) 259. [33] V. N. Verbetskii, E. A. Movlaev. RUSSIAN METALLURGY. (1991) 31.
3. 毕业设计(论文)进程安排
起讫日期 设计(论文)各阶段工作内容 15.12.22~15.12.26 课题任务书 15.12.27~16.1.15 文献综述、英文翻译与开题报告 16.2.20~16.3.1 试验材料准备 16.3.1~16.3.15 设计实验方案、进行实验 16.3.15~16.5.2 实验 16.5.3~16.5.8 实验、中期答辩 16.5.9~16.5.30 实验、整理实验数据、毕业论文撰写 16.5.31~16.6.10 毕业论文撰写、答辩