基于离子液体的新型中温Na/CuCl2电池的可行性研究任务书
2020-06-06 09:51:23
1. 毕业设计(论文)的内容和要求
主要内容包括: 课题简介: 传统的na/金属氯化物电池(又称zebra电池)是一种高温电池,使用的是双电解质体系,既β"-al2o3固体电解质(base)和naalcl4熔盐电解质协同使用。
但是naalcl4的熔点较高,在156℃以上,而且base也只有在260℃以上时才能表现出较高的电导率(0.2 s.cm-1),因此传统的zebra电池只能在较高的温度内(270~350℃)运行。
传统zebra电池的特点: 优点:钠电池具有高开路电压、高能量密度、运行温度范围较宽、无自放电现象、使用寿命长、便于现场安装与维护以及环境友好等众多优点。
2. 参考文献
1. Li G, Lu X, Jin Y K, et al. An Advanced Na#8211;FeCl2 ZEBRA Battery for Stationary Energy Storage Application[J]. Advanced Energy Materials, 2015, 5(12). 2. Ha, S., et al., Sodium-metal halide and sodium-air batteries.[J]. Chemphyschem, 2014, 15(10):1971#8211;1982. 3. Lu X, Coffey G W, Meinhardt K D, et al. High Power Planar Sodium-Nickel Chloride Battery[J]. ECS Transactions, 28(22):7-13, 2010, 28(22):7-13. 4. Hueso K B, Armand M, Rojo T. High Temperature Sodium Batteries: Status, Challenges and Future Trends[J]. Energy Environmental Science, 2013, 6(3):734-749. 5. Lu X, Li G, Jin Y K, et al. A novel low-cost sodium#8211;zinc chloride battery[J]. Energy Environmental Science, 2013, 6(6):1837-1843. 6. Dustmann C H. Advances in ZEBRA batteries[J]. Journal of Power Sources, 2004, 127(127):85-92. 7. Frutschy K, Chatwin T, Bull R. Cell overcharge testing inside sodium metal halide battery[J]. Journal of Power Sources, 2015, 291:117#8211;125. 8. Li G, Lu X, Jin Y K, et al. The role of FeS in initial activation and performance degradation of Na#8211;NiCl 2 batteries[J]. Journal of Power Sources, 2014, 272(272):398-403. 9. Lu X, Lemmon J P, Jin Y K, et al. High energy density Na#8211;S/NiCl 2 hybrid battery[J]. Journal of Power Sources, 2013, 224(4):312-316. 10. Lu X, Xia G, Lemmon J P, et al. Advanced materials for sodium-beta alumina batteries: Status, challenges and perspectives[J]. Journal of Power Sources, 2010, 195(9):2431-2442. 11. Wang S, Pan Z, Zhao J, et al. Study of Discharge Characteristics of Sodium/NiCl2 Cell Using Electrochemical Impedance Spectroscopy[J]. Journal of the Electrochemical Society, 2013, 160(3):A458-A463. 12. Hosseinifar M, Petric A. High temperature versus low temperature Zebra (Na/NiCl2) cell performance[J]. Journal of Power Sources, 2012, 206:402#8211;408. 13. Li G, Lu X, Jin Y K, et al. Improved cycling behavior of ZEBRA battery operated at intermediate temperature of 175#176;C[J]. Journal of Power Sources, 2014, 249:414#8211;417. 14. Yang L P, Liu X M, Zhang Y W, et al. Advanced intermediate temperature sodium copper chloride battery[J]. Journal of Power Sources, 2014, 272:987-990. 15. Gray G E, Kohl P A, Winnick J. Stability of Sodium Electrodeposited From a Series of Room Temperature Chloroaluminate Molten Salts.[J]. Journal of the Electrochemical Society, 1996, 142(11):3636-3642. 16. Park S H, Moore C W, Kohl P A, et al. A Study of Copper as a Cathode Material for an Ambient Temperature Sodium Ion Battery[J]. Journal of the Electrochemical Society, 2001, 148(12):A1346-A1351. 17. Lu X, Li G, Jin Y K, et al. Liquid-metal electrode to enable ultra-low temperature sodium-beta alumina batteries for renewable energy storage.[J]. Nature Communications, 2014, 5:4578-4578. 18. Gerovasili E, May J F, Sauer D U. Experimental evaluation of the performance of the sodium metal chloride battery below usual operating temperatures[J]. Journal of Power Sources, 2014, 251(2):137-144. 19. Reed D, Coffey G, Mast E, et al. Wetting of Sodium on β″-Al2O3/YSZ Composites for Low Temperature Planar Sodium-Metal Halide Batteries[J]. Journal of Power Sources, 227:94-100, 2013, 227:94#8211;100. 20. Xue L, Tucker T G, Angell C A. Ionic Liquid Redox Catholyte for High Energy Efficiency, Low-Cost Energy Storage[J]. Advanced Energy Materials, 2015, 5(12).
3. 毕业设计(论文)进程安排
起讫日期 设计(论文)各阶段工作内容 备 注 12.12-1.13 查阅文献,翻译英文文献,开题 3.13-4.28 实验 4.28-5.12 论文中期检查 5.12-5.28 实验总结 5.28-6.9 撰写论文及论文答辩