Mg95Ni5在PVP溶液中分散性影响因素的探究任务书
2020-06-09 22:41:44
1. 毕业设计(论文)的内容和要求
镁基储氢合金由于其理论储氢量高(mgh2为 7.6 wt.%)、资源丰富、价格低廉等优势被认为是最具潜力的储氢材料之一。
但是其动力学和热力学性能较差,制约其实际应用。
本课题组通过hcs-mm法制备的镁基储氢合金具有高容量和高活性,但是仍然存在着放氢动力学和热力学较差的问题。
2. 参考文献
[1] Targets for onboard Hydrogen storage systems for Light Duty Vehicles, US DoE. http://www1. Eere.energy.gov/hydrogenandfuelcells/storage/pdfs/target_sonboard_hydro_storage_explanation.pdf. [2] Lim, K. L,H. Kazemian, et al. Solid-state Materials and Methods for Hydrogen Storage: A Critical Review [J]. Chemical Engineering Technology, 2010, 33(2): 213-226. [3] Gosalawit-Utke R, Puszkiel J, Cattaneo Alice S, et al. 2LiBH4#8211;MgH2#8211;0.13TiCl4 confined in nanoporous structure of carbon aerogel scaffold for reversible hydrogen storage[J]. Journal of Alloys and Compounds, 2014, 599: 78-86. [4] Jianguang Yuan, Yunfeng Zhu, Liquan Li. Highly efficient bimetal synergetic catalysis by a multi-wall carbon nanotube supported palladium and nickel catalyst for the hydrogen storage of magnesium hydride [J]. Chem . Commun. , 2014,50, 6641-6644. [5] Hao Gu, Yunfeng Zhu, Liquan Li. Structures and hydrogen storage properties of Mg95Ni5 composite prepared by hydriding combustion synthesis and mechanical milling [J]. Mater. Chem. Phys., 2008, 112: 218-222. [6] Li L L, Peng B, Ji W Q, Chen J. A quantum chemical study on magnesium (Mg)/magnesium #8211;hydrogen (Mg-H) nanowires [J]. Journal of Alloys and compounds, 2009, 484(1/2): 308-313. [7] 邹勇进, 向翠丽, 邱树君, 等. 纳米限域的储氢材料[J]. 化学进展, 2013,(01):115-121. [8] Weiyu Xie, Damien J. West, Yiyang Sun, et al. Role of nano in catalysis: Palladium catalyzed hydrogen desorption from nanosized magnesium hydride [J]. Nano Energy , 2013, 2, 742#8211;748 [9] Floriano R., Leiva D. R., Deledda S., et al. MgH2-based nanocomposites prepared by short-time high energy ball milling followed by cold rolling: A new processing route [J]. J. Hydrogen energy, 2014, 39, 4404-4413. [10] Tayeh Toufic, Awad Abdel Salam, Nakhl Michel, et al. Carbon-modified MgH2: Experimental and ab-initio Investigations [J]. Zeitschrift fur naturforschung section b-a journal of chemical sciences, 2014, 69, 804-810. [11] Nielsen T K, Manickam K, Hirscher M, et al. Confinement of MgH2 Nanoclusters within Nanoporous Aerogel Scaffold Materials[J]. ACS NANO, 2009, 3(11): 3521-3528. [12] 李志宝,孙立贤, 徐芬, 等. MgH2/PMMA 复合储氢材料的制备及其脱氢研究[J]. 电源技术, 2015,(08): 1668-1670. [13] Bin-Hao Chen, Chia-Hung Kuo, Jie-Ren Ku, et al. Highly improved with hydrogen storage capacity and fast kinetics in Mg-based nanocomposites by CNTs [J]. Journal of Alloys and Compounds, 2013, 568, 78#8211;83. [14] Vajo JJ. Influence of nano-confinement on the thermodynamics and dehydrogenation kinetics of metal hydrides. Current Opinion in Solid State and Materials Science, 2011, 15:52-61. [15] Claudia Zlotea, Michel Latroche. Role of nanoconfinement on hydrogen sorption properties of metal nanoparticles hybrids [J]. Colloids and Surfaces A: Physicochem. Eng. Aspects, 2013, 439, 117#8211;130. [16] Rapee GosalawiteUtke, Sophida Thiangviriya, Payam Javadian, et al. Effective nanoconfinement of 2LiBH4-MgH2 via simply MgH2 premilling for reversible hydrogen storages [J]. J. Hydrogen energy, 2014, 39, 15614-15626. [17] Javadian Payam, Jensen Torben R. Enhanced hydrogen reversibility of nanoconfined LiBH4-Mg(BH4)(2) [J]. J. Hydrogen energy, 2014, 39, 9871-9876. [18] Guangqin Li, Hirokazu Kobayashi, Jared M. Taylor, et al. Hydrogen storage in Pd nanocrystals covered with a metal-organic framework [J]. Nature Materials, 2014, 13(8), 802-806. [19] Lim, D.W, Yoon, J.W, et al. Magnesium Nanocrystals Embedded in a Metal#8211;Organic Framework: Hybrid Hydrogen Storage with Synergistic Effect on Physi- and Chemisorption [J]. Angewandte Chemie, 2012, 124(39): 9952-9955. [20] Marzia Pentimalli, Franco Padella, Aurelio La Barbera, et al. A metal hydride#8211;polymer composite for hydrogen storage applications [J]. Energy Conversion and Management, 2009, 50, 3140#8211;3146. [21] Y. Liu, Alexander Rzhevskii, S. Rigos a, et al. A study of Parylene coated Pd/Mg nanoblabes for reversible hydrogen storage [J]. J. Hydrogen energy, 2013, 38, 5019-5029. [22] Jeon, K. J, H. R. Moon, et al. Air-stable magnesium nanocomposites provide rapid and high-capacity hydrogen storage without using heavy-metal catalysts [J]. Nature Materials, 2011, 10(4): 286-290. [23] Jianmei Huang, Yurong Yan, Liuzhang Ouyang, et al. Increased air stability and decreased dehydrogenation temperature of LiBH4 via modification within poly(methylmethacrylate) [J]. Dalton Transactions Communication, 2014, 43, 410-413. [24] Rapee Gosal awit-Utke, Sukanya Meethom, Claudio Pistidda, et al. Destabilization of LiBH4 by nanoconfinement in PMMA-co-BM polymer matrix for reversible hydrogen storage [J]. J. Hydrogen energy, 2014, 39, 5019-5029. [25] Anne M . Rum inski, Rizia Bardhan, et al. Synergistic enhancement of hydrogen storage and air stability via Mg nanocrystal#8211;polymer interfacial interactions [J]. Energ y Environmental Science Communication, 2013, 6, 3267#8211;3271. [26]Pentimalli M, F Padella, et al. A metal hydride-polymer composite for hydrogen storage applications [J]. Energy Conversion and Management, 2009, 50(12): 3140-3146. [27] Cui J, Wang H, Sun D L, et al. Realizing nano-confinement of magnesium for hydrogen storage using vapour transport deposition[J]. Rare Metals, 2016, 35(5): 401-407. [28] Hong S, Song M Y. Preparation of Mg-MgH2 Flakes by Planetary Ball Milling With Stearic Acid and Their Hydrogen Storage Properties[J]. METALS AND MATERIALS INTERNATIONAL, 2016, 22(3): 544-549.
3. 毕业设计(论文)进程安排
2016.12.22~ 20156.12.31 中国期刊网、维普数据库以及Elsevier数据库等数据库查阅国内外相关文献 2016.1.04 ~ 2016.1.15 完成外文文献翻译,撰写开题报告,开题报告答辩 2016.3.14~2016.4.5 分散剂种类对Mg95Ni5在PVP溶液中分散性的影响因素探究 2016.4.06~ 2016.4.19 中期检查与答辩 2016.4.20~ 2016.5.10 分散剂含量对Mg95Ni5在PVP溶液中分散性的影响因素探究 2016.5.11~ 2016.5.15 溶液超声处理条件对Mg95Ni5在PVP溶液中分散性的影响因素探究 2016.5.16~ 2016.5.29 撰写毕业论文 2016.5.30~ 2016.6.5 完成毕业论文及答辩 2016.6.6~ 2016.6.14 总结、归档