基于功能皮革的柔性器件的制备与应用任务书
2020-06-28 20:21:02
1. 毕业设计(论文)的内容和要求
近年来,随着电子设备的快速发展,独立地为柔性电子器件持续供电的新型能源亟需发展,这种能源可以广泛的应用于化学-生物传感器、机器人、微机电系统(mems)和可穿戴电子设备等各个领域。
摩擦发电机由于其具有质量轻、安全性高、清洁环保及可持续性等一系列优点,正在成为人们关注的焦点。
它不受外界环境包括温度、湿度、光强等因素影响,只需通过机械力作用,利用摩擦起电效应和静电感应的耦合效应就可以将行走、打字甚至呼吸、眨眼、心跳等机械能转化为电能,继而为可穿戴器件持续稳定地供电。
2. 参考文献
1、 Z.L. Wang, W. Wu, Nanotechnology-enabled energy harvesting for self-powered micro-/ nanosystems[J]. Angew. Chem. Int. Ed. 2012, 51(47): 11700#8211;11721.#8232; 2、 D. Davies, Charge generation on dielectric surfaces[J]. J. Phys. D Appl. Phys. 1969, 2(11): 1533. 3、 S. Wang, L. Lin, Y. Xie, et al. Sliding-triboelectric nanogenerators #8232;based on in-plane charge-separation mechanism[J]. Nano Lett. 2013, 13(5): 2226#8211;2233. #8232; 4、 G. Zhu, J. Chen, Y. Liu, et al. Linear-grating #8232;triboelectric generator based on sliding electrification[J]. Nano Lett. 2013, 13(5): 2282#8211;2289.#8232; 5、 S. Wang, L. Lin, Z.L. Wang, Triboelectric nanogenerators as self-powered active sensors[J]. #8232;Nano Energy 2015, 11: 436#8211;462.#8232; 6、 Z.L. Wang, Triboelectric nanogenerators as new energy technology and self-powered sensors #8232;#8212;Principles, problems and perspectives[J]. Faraday Discuss 2014, 176:447#8211;458. 7、 G. Zhu, C.F. Pan, W.X. Guo, et al. Triboelectric-generator-driven pulse electrodeposition for micropatterning[J]. Nano Lett. 2012, 12(9): 4960#8211;4965.#8232; 8、 S.H. Wang, L. Lin, Z.L. Wang, Nanoscale triboelectric-effect-enabled energy conversion for sustainably powering portable electronics[J]. Nano Lett. 2012, 12(12): 6339#8211;6346. 9、 P. Bai, G. Zhu, Z.H. Lin, et al. Integrated multilayered triboelectric nanogenerator for harvesting biomechanical energy from human motions[J]. ACS Nano 2013, 7(4): 3713#8211;3719. 10、 S.H. Wang, L. Lin, Y.N. Xie, et al. Sliding-triboelectric nanogenerators based on in-plane charge-separation mechanism[J]. Nano Lett. 2013, 13(5): 2226#8211;2233. #8232; 11、 G. Zhu, Y.S. Zhou, P. Bai, et al. A Shape-adaptive thin-film-based approach for 50 % high-efficiency energy generation through micro-grating sliding electrification[J]. Adv. Mater. 2014, 26(23): 3788#8211;3796.#8232; 12、 S.M. Niu, S.H. Wang, Y. Liu, et al. A theoretical study of grating structured triboelectric nanogenerators[J]. Energy Environ. Sci. 2014, 7(7): 2339#8211;2349.#8232; 13、 J. Zhong, Y. Zhang, Q. Zhong, et al. Fiber-based generator for wearable electronics and mobile medication[J]. ACS Nano 2014, 8(6): 6273#8211;6280.#8232; 14、 X. Pu, L. Li, H. Song, et al. A self-charging power unit by integration of a textile triboelectric nanogenerator and a flexible lithium-ion battery for wearable electronics[J]. Adv. Mater. 2015, 27(15): 2472#8211;2478. 15、 X. Li, Z.-H. Lin, G. Cheng, et al. 3D fiber-based hybrid nanogenerator for energy harvesting and as a self-powered pressure sensor[J]. ACS Nano 2014, 8(10): 10674#8211;10681.
3. 毕业设计(论文)进程安排
2017.12-2018.2 熟知纳米发电机以及皮革的背景知识(查阅书籍、相关课题组研究进程以及文献); 2018.3-2018.4 制备基于皮革的摩擦发电机,并且掌握相关的仪器操作和分析测试方法; 2018.5-2018.6 优化制备的摩擦发电机,总结数据,撰写论文。