碳包覆管状Si-纤维的制备及其锂电负极性能研究任务书
2020-06-28 20:22:03
1. 毕业设计(论文)的内容和要求
在目前已知的储锂材料中,硅的理论比容量最高(4200m ah/g),储量丰富(地壳元素含量中排第二位),并且硅的嵌锂电位较高(0.2 v vs li/li ),即使在大倍率下工作也不会形成锂枝晶,安全性好,是非常具有潜力的下一代锂离子电池负极材料。
硅负极也存在一些缺点,主要表现为以下三个方面:1)硅负极在电化学脱嵌锂的过程中,伴随着高达300%的巨大体积变化,由此产生的机械作用力会造成硅颗粒的破碎、粉化,使硅颗粒与集流体的电接触丧失,造成硅负极材料容量的急剧衰减,表现为极差的循环稳定性。
2)硅是一种半导体材料,其本征电导率仅为 6.7 x10-4s/cm,在作为电极材料时需要加入高导电材料。
2. 参考文献
[1] Yang J, Wang Y, Li W, Wang L, Fan Y, Jiang W, et al. Amorphous TiO2 Shells: A Vital Elastic Buffering Layer on Silicon Nanoparticles for High-Performance and Safe Lithium Storage. Advanced materials (Deerfield Beach, Fla.). 2017:1700523. [2] Chen S, Shen L, van Aken PA, Maier J, Yu Y. Dual-Functionalized Double Carbon Shells Coated Silicon Nanoparticles for High Performance Lithium-Ion Batteries. ADV MATER. 2017; 29:1605650. [3] Du FH, Li B, Fu W, Xiong YJ, Wang KX. Surface binding of polypyrrole on porous silicon hollow nanospheres for Li-ion battery anodes with high structure stability. ADV MATER. 2014. [4] Liu Y, Tai Z, Zhou T, Sencadas V, Zhang J, Zhang L, et al. An All-Integrated Anode via Interlinked Chemical Bonding between Double-Shelled-Yolk-Structured Silicon and Binder for Lithium-Ion Batteries. ADV MATER. 2017; 29:1703028. [5] Xu Q, Li J, Sun J, Yin Y, Wan L, Guo Y. Watermelon-Inspired Si/C Microspheres with Hierarchical Buffer Structures for Densely Compacted Lithium-Ion Battery Anodes. ADV ENERGY MATER. 2017; 7:1601481. [6] Yoon T, Bok T, Kim C, Na Y, Park S, Kim KS. Mesoporous Silicon Hollow Nanocubes Derived from Metal-Organic Framework Template for Advanced Lithium-Ion Battery Anode. ACS NANO. 2017; 11:4808-15. [7] Xu R, Wang G, Zhou T, Zhang Q, Cong H, Xin S, et al. Rational design of Si@carbon with robust hierarchically porous custard-apple-like structure to boost lithium storage. NANO ENERGY. 2017; 39:253-61. [8] Mesoporous Silica Hollow Spheres with Ordered Radial Mesochannels by a Spontaneous Self-Transformation Approach. CHEM MATER. 2013. [9] Li Z, He Q, He L, Hu P, Li W, Yan H, et al. Self-sacrificed synthesis of carbon-coated SiOx nanowires for high capacity lithium ion battery anodes. J MATER CHEM A. 2017; 5:4183-9. [10] Epur R, Hanumantha PJ, Datta MK, Hong D, Gattu B, Kumta PN. A simple and scalable approach to hollow silicon nanotube (h-SiNT) anode architectures of superior electrochemical stability and reversible capacity. J MATER CHEM A. 2015; 3:11117-29. [11] Su J, Zhao J, Li L, Zhang C, Chen C, Huang T, et al. Three-Dimensional Porous Si and SiO2 with In Situ Decorated Carbon Nanotubes As Anode Materials for Li-ion Batteries. ACS APPL MATER INTER. 2017; 9:17807-13. [12] Xie J, Tong L, Su L, Xu Y, Wang L, Wang Y. Core-shell yolk-shell Si@C@Void@C nanohybrids as advanced lithium ion battery anodes with good electronic conductivity and corrosion resistance. J POWER SOURCES. 2017; 342:529-36. [13] Yang T, Tian X, Li X, Wang K, Liu Z, Guo Q, et al. Double Core-Shell Si@C@SiO2 for Anode Material of Lithium-Ion Batteries with Excellent Cycling Stability. Chemistry - A European Journal. 2017; 23:2165-70. [14] Gao P, Tang H, Xing A, Bao Z. Porous silicon from the magnesiothermic reaction as a high-performance anode material for lithium ion battery applications. ELECTROCHIM ACTA. 2017; 228:545-52. [15] Chen Y, Du N, Zhang H, Yang D. Porous Si@C coaxial nanotubes: layer-by-layer assembly on ZnO nanorod templates and application to lithium-ion batteries. CRYSTENGCOMM. 2017; 19:1220-9.
3. 毕业设计(论文)进程安排
2017-12-16~2018-01-10 查阅文献,制定实验方案,完成开题报告 2018-01-10~2018-01-31 熔盐法制备得到氢氧化镧纤维 2018-02-01~2018-04-10 通过碳包覆和镁热还原制备得到C@Si@C管状复合纤维 2018-04-11~2018-05-20 通过XRD,FESEM和TEM等手段对样品组成和结构进行表征,通过恒电流充放电、循环伏安以及交流阻抗对其电化学性能进行表征 2018-05-21~2018-06-07 毕业论文的撰写,完成毕业论文的各项结束工作和毕业答辩