CoNiP纳米片的合成及其电催化性能研究任务书
2020-06-28 20:22:06
1. 毕业设计(论文)的内容和要求
随着各种环境问题的增加以及化石燃料的消耗,开发一种清洁、可再生、环境友好、无污染的替代能源已迫在眉睫。
对比各种可替代能源,通过电解水得到的氢能由于其燃烧热值高、环境友好、资源丰富等特性有着巨大的优势。
虽然电解水制氢技术极有可能满足我们的需求,然而在实际使用操作中却受到其高成本的限制。
2. 参考文献
[1] Chang J F, Xiao Y, Luo Z Y, et al, Recent Progress of Non-Noble Metal Catalysts in Water Electrolysis for Hydrogen Production, Acta Physico-Chimica Sinica, 2016, 32(7): 1556-1592. [2] Fei H, Dong J, Arellano-Jim#233;nez M J, et al, Atomic cobalt on nitrogen-doped graphene for hydrogen generation, Nature communications, 2015, 6: 8668. [3] Li J, Zhou P, Li F, et al, Shape-controlled synthesis of Pd polyhedron supported on polyethyleneimine-reduced graphene oxide for enhancing the efficiency of hydrogen evolution reaction, Journal of Power Sources, 2016, 302: 343-351. [4] Esposito D V, Hunt S T, Stottlemyer A L, et al, Low‐Cost Hydrogen‐Evolution Catalysts Based on Monolayer Platinum on Tungsten Monocarbide Substrates, Angewandte Chemie International Edition, 2010, 49(51): 9859-9862. [5] Huang X, Zeng Z, Bao S, et al, Solution-phase epitaxial growth of noble metal nanostructures on dispersible single-layer molybdenum disulfide nanosheets, Nature communications, 2013, 4: 1444. [6] Yan D, Dou S, Tao L, et al, Electropolymerized supermolecule derived N, P co-doped carbon nanofiber networks as a highly efficient metal-free electrocatalyst for the hydrogen evolution reaction, Journal of Materials Chemistry A, 2016, 4(36): 13726-13730. [7] Morales-Guio C G, Hu X, Amorphous molybdenum sulfides as hydrogen evolution catalysts, Accounts of chemical research, 2014, 47(8): 2671-2681. [8] Gao M R, Liang J X, Zheng Y R, et al, An efficient molybdenum disulfide/cobalt diselenide hybrid catalyst for electrochemical hydrogen generation, Nature communications, 2015, 6. [9] Jin H, Wang J, Su D, et al, In situ cobalt#8211;cobalt oxide/N-doped carbon hybrids as superior bifunctional electrocatalysts for hydrogen and oxygen evolution, J. Am. Chem. Soc, 2015, 137(7): 2688-2694. [10] Wu L, Li Q, Wu C H, et al, Stable cobalt nanoparticles and their monolayer array as an efficient electrocatalyst for oxygen evolution reaction, J. Am. Chem. Soc, 2015, 137(22): 7071-7074. [11] Wang J, Cui W, Liu Q, et al, Recent progress in cobalt‐based heterogeneous catalysts for electrochemical water splitting, Advanced materials, 2016, 28(2): 215-230. [12] Jiao Y, Zheng Y, Jaroniec M, et al, Design of electrocatalysts for oxygen-and hydrogen-involving energy conversion reactions, Chemical Society Reviews, 2015, 44(8): 2060-2086. [13] Tang C, Cheng N, Pu Z, et al, NiSe nanowire film supported on nickel foam: an efficient and stable 3D bifunctional electrode for full water splitting, Angewandte Chemie, 2015, 127(32): 9483-9487. [14] Zhu Y P, Liu Y P, Ren T Z, et al, Self‐Supported Cobalt Phosphide Mesoporous Nanorod Arrays: A Flexible and Bifunctional Electrode for Highly Active Electrocatalytic Water Reduction and Oxidation, Advanced Functional Materials, 2015, 25(47): 7337-7347. [15] Yang L, Gao M, Dai B, et al, An efficient NiS@ N/SC hybrid oxygen evolution electrocatalyst derived from metal-organic framework, Electrochimica Acta, 2016, 191: 813-820. [16] He P, Yu X Y, Lou X W D, Carbon-Incorporated Nickel-Cobalt Mixed Metal Phosphide Nanoboxes with Enhanced Electrocatalytic Activity for Oxygen Evolution, Angewandte Chemie, 2017, 129(14): 3955-3958. [17] Zhou J, Dou Y, Zhou A, et al, MOF Template-Directed Fabrication of Hierarchically Structured Electrocatalysts for Efficient Oxygen Evolution Reaction, Advanced Energy Materials, 2017. [18] Y, Huang T, Wen Z, et al, Metal-organic framework-derived nitrogen-doped core-shell-structured porous Fe/Fe3C@C nanoboxes supported on graphene sheets for efficient oxygen reduction reactions, Advanced Energy Materials, 2014, 4(11). [19] Zhong H, Wang J, Zhang Y, et al, ZIF-8 Derived Graphene-Based Nitrogen-Doped Porous Carbon Sheets as Highly Efficient and Durable Oxygen Reduction Electrocatalysts, Angewandte Chemie International Edition, 2014, 53(51): 14235-14239. [20] Jiao L, Zhou Y X, Jiang H L, Metal#8211;organic framework-based CoP/reduced graphene oxide: high-performance bifunctional electrocatalyst for overall water splitting, Chemical Science, 2016, 7(3): 1690-1695.
3. 毕业设计(论文)进程安排
2017-12-12~2018-01-23 查阅文献,制定实验方案,完成开题报告 2018-01-24~2018-04-20 CoNiP纳米片的制备 2018-04-21~2018-05-31 CoNiP纳米片电催化性能的表征 2018-06-01~2018-06-07 毕业论文的撰写 2018-06-08~2018-06-13 完成毕业论文的各项结束工作和毕业答辩